
fantastico Documentation
Release 0.7.0-b141

Radu Viorel Cosnita

January 25, 2015

CONTENTS

1 Introduction 1
1.1 Why another python framework? . 1
1.2 Fantastico’s initial ideas . 1

2 Getting started 3
2.1 Installation manual . 3
2.2 Fantastico settings . 4
2.3 Contribute . 7
2.4 Development mode . 9

3 How to articles 11
3.1 Creating a new project . 11
3.2 Creating a simple TODO application . 12
3.3 MVC How to . 29
3.4 Deployment how to . 30
3.5 Static assets . 34

4 Fantastico features 37
4.1 Exceptions hierarchy . 37
4.2 Request lifecycle . 38
4.3 Routing engine . 41
4.4 Model View Controller . 44
4.5 CORS . 52
4.6 ROA (Resource Oriented Architecture) . 53
4.7 OAUTH2 . 75
4.8 SDK . 95
4.9 Component model . 101
4.10 Component reusage . 103
4.11 Built in components . 104

5 Changes 113
5.1 Feedback . 113
5.2 Versions . 113

6 Provide feedback 117

7 Build status 119

8 License 121

Index 123

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 Why another python framework?

The main reason for developing a new framework is simple: I want to use it for teaching purposes. I have seen many
projects which fail either because of poor coding or because they become legacy very fast. I will not get into details
why and what could have been done. It defeats the purpose.

Each piece of code that is being added to fantastico will follow these simple rules:

1. The code is written because is needed and there is no clean way to achieve the requirement with existing fantas-
tico features.

2. The code is developed using TDD (Test Driven Development).

3. The code quality is 9+ (reported by pylint).

4. The code coverage is 90%+ (reported by nose coverage).

5. The code is fully documented and included into documentation.

1.1.1 What do you want to teach who?

I am a big fan of Agile practices and currently I own a domain called scrum-expert.ro. This is meant to become a
collection of hands on resource of how to develop good software with high quality and in a reasonable amount of time.
Resources will cover topics like

1. Incremental development always ready for rollout.

2. TDD (Test Driven Development)

3. XP (eXtreme programming)

4. Scrum

5. Projects setup for Continuous Delivery

and many other topics that are required for delivering high quality software but apparently so many companies are
ignoring nowadays.

1.2 Fantastico’s initial ideas

• Very fast and pluggable routing engine.

• Easily creation of REST apis.

• Easily publishing of content (dynamic content).

1

fantastico Documentation, Release 0.7.0-b141

• Easily composition of available content.

• Easily deployment on non expensive infrastructures (AWS, RackSpace).

Once the features above are developed there should be extremely easy to create the following sample applications:

1. Blog development

2. Web Forms development.

3. Personal web sites.

2 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

2.1 Installation manual

In this section you can find out how to configure fantastico framework for different purposes.

2.1.1 Developing a new fantastico project

Currently fantastico is in early stages so we did not really use it to create new projects. The desired way we want to
provide this is presented below:

pip-3.2 install fantastico

Done, now you are ready to follow our tutorials about creating new projects.

2.1.2 Contributing to fantastico framework

Fantastico is an open source MIT licensed project to which any contribution is welcomed. If you like this framework
idea and you want to contribute do the following (I assume you are on an ubuntu machine):

#. Create a github account.
#. Ask for permissions to contribute to this project (send an email to radu.cosnita@gmail.com) - I will gladly grant you permissions.
#. Create a folder where you want to hold fantastico framework files. (e.g worspace_fantastico)
#. cd ~/workspace_fantastico
#. git clone git@github.com:rcosnita/fantastico
#. sudo apt-get install python3-setuptools
#. sh virtual_env/setup_dev_env.sh
#. cd ~/workspace_fantastico
#. git clone git@github.com:rcosnita/fantastico fantastico-doc
#. git checkout gh-pages

Now you have a fully functional fantastico workspace. I personally use PyDev and spring toolsuite but you are free to
use whatever editor you want. The only rule we follow is always keep the code stable. To check the stability of your
contribution before commiting the code follow the steps below:

#. cd ~/workspace_fantastico/fantastico/fantastico
#. sh run_tests.sh (we expect no failure in here)
#. sh run_pylint.sh (we expect 9+ rated code otherwise the build will fail).
#. cd ~/workspace_fantastico/fantastico
#. export BUILD_NUMBER=1
#. ./build_docs.sh (this will autogenerate documentation).
#. Look into ~/workspace_fantastico/fantastico-doc
#. Here you can see the autogenerated documentation (do not commit this as Jenkins will do this for you).
#. Be brave and push your newly awesome contribution.

3

fantastico Documentation, Release 0.7.0-b141

2.2 Fantastico settings

Fantastico is configured using a plain settings file. This file is located in the root of fantastico framework or in the root
folder of your project. Before we dig further into configuration options lets see a very simple settings file:

class BasicSettings(object):
@property
def installed_middleware(self):

return ["fantastico.middleware.request_middleware.RequestMiddleware",
"fantastico.middleware.routing_middleware.RoutingMiddleware"]

@property
def supported_languages(self):

return ["en_us"]

The above code sample represent the minimum required configuration for fantastico framework to run. The order in
which middlewares are listed is the order in which they are executed when an http request is made.

2.2.1 Settings API

Below you can find technical information about settings.

class fantastico.settings.BasicSettings
This is the core class that describes all available settings of fantastico framework. For convenience all options
have default values that ensure minimum functionality of the framework. Below you can find an example of
three possible configuration: Dev / Stage / Production.

As you can see, if you want to overwrite basic configuration you simply have to extend the class and set new
values for the attributes you want to overwrite.

access_token_validity
This property defines the validity of an access token in seconds. By default, this property is set to 1h =
3600 seconds.

database_config
This property holds the configuration of database. It is recommended to have all environment configured
the same. An exception can be done for host but the rest must remain the same. Below you can find an
example of functional configuration:

config = {"drivername": "mysql+mysqlconnector",
"username": "fantastico",
"password": "12345",
"port": 3306,
"host": "localhost",
"database": "fantastico",

4 Chapter 2. Getting started

fantastico Documentation, Release 0.7.0-b141

"additional_params": {"charset": "utf8"},
"show_sql": True,
"additional_engine_settings": {

"pool_size": 20,
"pool_recycle": 600}

}

As you can see, in your configuration you can influence many attributes used when configuring the driver
/ database. show_sql key tells orm engine from Fantastico to display all generated queries.

Moreover, by default Fantastico holds connections opened for 10 minutes. After 10 minutes it refreshes
the connection and ensures no thread is using that connection till is completely refreshed.

dev_server_host
This property holds development server hostname. By default this is localhost.

dev_server_port
This property holds development server port. By default this is 12000.

doc_base
This property defines public location of Fantastico documentation.

global_response_headers
This property defines the headers which must be appended to every response. You can use this property in
order to globally enable cors.

return {"Access-Control-Allow-Origin": "*"}

By default, no global header is appended to response.

installed_middleware
Property that holds all installed middlewares.

mvc_additional_paths
This property defines additional packages which must be scanned for controllers. You can use this in
order to specify custom mvc controllers location which are not found in custom components. For instance,
OAuth2 controller resides in core packages of Fantastico.

oauth2_idp
This property holds the configuration for Fantastico default Identity Provider. In most cases you will
change the template applied to login screen in order to customize it to your needs. If you want to change
the template for login screen make sure your provide relative path to your components root folder (e.g
/components/frontend/views/custom_login.html). Moreover, you can also specify the login token validity
period (in seconds). It is recommended to set a high value (e.g 2 weeks).

Additionaly, you can control default idp index page. Usually, Fantastico OAuth2 identity provider login
page should be good enough.

return {"client_id": "11111111-1111-1111-1111-111111111111",
"template": "/components/frontend/views/custom_login.html",
"expires_in": 1209600,
"idp_index": "/oauth/idp/ui/login"}

roa_api
This property defines the url for mapping ROA resources api. By default is /api. Read more about ROA
on ROA Auto discovery.

routes_loaders
This property holds all routes loaders available.

2.2. Fantastico settings 5

fantastico Documentation, Release 0.7.0-b141

supported_languages
Property that holds all supported languages by this fantastico instance.

templates_config
This property holds configuration of templates rendering engine. For the moment this influence how Jinja2
acts.

2.2.2 Create Dev configuration

Let’s imagine you want to create a custom dev configuration for your project. Below you can find the code for this:

class DevSettings(BasicSettings):
@property
def supported_languages(self):

return ["en_us", "ro_ro"]

The above configuration actually overwrites supported languages. This mean that only en_us is relevant for Dev
environment. You can do the same for Stage, Prod or any other custom configuration.

2.2.3 Using a specifc configuration

class fantastico.settings.SettingsFacade(environ=None)
For using a specific fantastico configuration you need to do two simple steps:

•Set FANTASTICO_ACTIVE_CONFIG environment variable to the fully python qualified class name
you want to use. E.g: fantastico.settings.BasicSettings

•In your code, you can use the following snippet to access a specific setting:

from fantastico.settings import SettingsFacade

print(SettingsFacade().get("installed_middleware"))

If no active configuration is set in the fantastico.settings.BasicSettings will be used.

get(name)
Method used to retrieve a setting value.

Parameters

• name – Setting name.

• type – string

Returns The setting value.

Return type object

get_config()
Method used to return the active configuration which is used by this facade.

Return type fantastico.settings.BasicSettings

Returns Active configuration currently used.

get_root_folder()
Method used to return the root folder of the current fantastico project (detected starting from settings)
profile used.

6 Chapter 2. Getting started

http://jinja.pocoo.org/docs/

fantastico Documentation, Release 0.7.0-b141

2.3 Contribute

Fantastico framework is open source so every contribution is welcome. For the moment we are looking for more
developers willing to contribute.

2.3.1 Code contribution

If you want to contribute with code to fantastico framework there are a simple set of rules that you must follow:

• Write unit tests (for the code / feature you are contributing).

• Write integration tests (for the code / feature you are contributing).

• Make sure your code is rated above 9.5 by pylint tool.

• In addition integration tests and unit tests must cover 95% of your code.

In order for each build to remain stable the following hard limits are imposed:

1. Unit tests must cover >= 95% of the code.

2. Integration tests must cover >= 95% of the code.

3. Code must be rated above 9.5 by pylint.

4. Everything must pass.

When you push on master a set of jobs are cascaded executed:

1. Run all unit tests job.

2. Run all integration tests job (only if unit tests succeeds).

3. Generate documentation and publish it (only if integration tests job succeeds).

You can follow the above build process by visiting Jenkins build. Login with your github account and everything
should work smoothly.

In the end do not forget that in Fantastico framework we love to develop against a stable base. We really think code
will have high quality and zero bugs.

Writing unit tests

For better understanding how to write unit tests see the documentation below:

class fantastico.tests.base_case.FantasticoUnitTestsCase(methodName=’runTest’)
This is the base class that must be inherited by each unit test written for fantastico.

class SimpleUnitTest(FantasticoUnitTestsCase):
def init(self):

self._msg = "Hello world"

def test_simple_flow_ok(self):
self.assertEqual("Hello world", self._msg)

_get_class_root_folder()
This methods determines the root folder under which the test is executed.

_get_root_folder()
This method determines the root folder under which core is executed.

2.3. Contribute 7

http://jenkins.scrum-expert.ro:8080/job/fantastico-framework/

fantastico Documentation, Release 0.7.0-b141

check_original_methods(cls_obj)
This method ensures that for a given class only original non decorated methods will be invoked. Extremely
useful when you want to make sure @Controller decorator does not break your tests. It is strongly rec-
ommended to invoke this method on all classes which might contain @Controller decorator. It ease your
when committing on CI environment.

classmethod setup_once()
This method is overriden in order to correctly mock some dependencies:

•fantastico.mvc.controller_decorators.Controller

Writing integration tests

For better understanding how to write integration tests see the documentation below:

class fantastico.tests.base_case.FantasticoIntegrationTestCase(methodName=’runTest’)
This is the base class that must be inherited by each integration test written for fantastico. If you used this class
you don’t have to mind about restoring call methods from each middleware once they are wrapped by fantastico
app. This is a must because otherwise you will crash other tests.

_envs
Private property that holds the environments against which we run the integration tests.

_get_db_conn()
This method opens a db connection and returns it to for usage.

_get_oauth2_logintoken(client_id, user_id)
This methods generates an oauth2 login token which can be used in integration tests.

_get_oauth2_token(client_id, user_id, scopes)
This method generates an oauth2 access token which can be used in integration tests.

_get_token(token_type, token_desc)
This method provides a generic token generation method which can be used in integration tests.

_invalidate_encrypted_token(encrypted_token)
This method invalidates a given encrypted token using tokens service implementation.

_invalidate_oauth2_token(token)
This method invalidates the given token automatically.

_restore_call_methods()
This method restore original call methods to all affected middlewares.

_save_call_methods(middlewares)
This method save all call methods for each listed middleware so that later on they can be restored.

fantastico_cfg_os_key
This property holds the name of os environment variable used for setting up active fantastico configuration.

class fantastico.server.tests.itest_dev_server.DevServerIntegration(methodName=’runTest’)
This class provides the foundation for writing integration tests that do http requests against a fantastico server.

class DummyLoaderIntegration(DevServerIntegration):
def init(self):

self._exception = None

def test_server_runs_ok(self):
def request_logic(server):

request = Request(self._get_server_base_url(server, DummyRouteLoader.DUMMY_ROUTE))
with self.assertRaises(HTTPError) as cm:

8 Chapter 2. Getting started

fantastico Documentation, Release 0.7.0-b141

urllib.request.urlopen(request)

self._exception = cm.exception

def assert_logic(server):
self.assertEqual(400, self._exception.code)
self.assertEqual("Hello world.", self._exception.read().decode())

self._run_test_against_dev_server(request_logic, assert_logic)

As you can see from above listed code, when you write a new integration test against Fantastico server you only
need to provide the request logic and assert logic functions. Request logic is executed while the server is up and
running. Assert logic is executed after the server has stopped.

_check_server_started(server)
This method holds the sanity checks to ensure a server is started correctly.

_get_server_base_url(server, route)
This method returns the absolute url for a given relative url (route).

_run_test_against_dev_server(request_logic, assert_logic=None)
This method provides a template for writing integration tests that requires a development server being
active. It accepts a request logic (code that actually do the http request) and an assert logic for making sure
code is correct.

2.4 Development mode

Fantastico framework is a web framework designed to be developers friendly. In order to simplify setup sequence,
fantastico provides a standalone WSGI compatible server that can be started from command line. This server is fully
compliant with WSGI standard. Below you can find some easy steps to achieve this:

1. Goto fantastico framework or project location

2. sh run_dev_server.sh

This is it. Now you have a running fantastico server on which you can test your work.

By default, Fantastico dev server starts on port 12000, but you can customize it from
fantastico.settings.BasicSettings.

2.4.1 Hot deploy

Currently, this is not implemented, but it is on todo list on short term.

2.4.2 API

For more information about Fantastico development server see the API below.

class fantastico.server.dev_server.DevServer(settings_facade=<class ‘fantas-
tico.settings.SettingsFacade’>)

This class provides a very simple wsgi http server that embeds Fantastico framework into it. As developer you
can use it to simply test your new components.

2.4. Development mode 9

fantastico Documentation, Release 0.7.0-b141

start(build_server=<function make_server at 0x66fef30>, app=<class ‘fantas-
tico.middleware.fantastico_app.FantasticoApp’>)

This method starts a WSGI development server. All attributes like port, hostname and protocol are read
from configuration file.

started
Property used to tell if development server is started or not.

stop()
This method stops the current running server (if any available).

2.4.3 Database config

Usually you will use Fantastico framework together with a database. When we develop new core features of Fantas-
tico we use a sample database for integration. You can easily use it as well to play around:

1. Goto fantastico framework location

2. export MYSQL_PASSWD=***** (your mysql password)

3. export MYSQL_HOST=<hostname> (your mysql hostname: e.g localhost)

4. sh run_setup_db.sh

run_setup_db.sh create an initial fantastico database and a user called fantastico identified by 12345 password. After
database is successfully created, it scans for all available module_setup.sql files and execute them against newly
created database.

10 Chapter 2. Getting started

CHAPTER

THREE

HOW TO ARTICLES

3.1 Creating a new project

A new Fantastico based project can be easily setup by following this how to. In this how to we are going to create a
project named fantastico_first.

1. cd ~/

2. mkdir fantastico_first

3. cd fantastico_first

4. virtualenv-3.2 –distribute pip-deps

5. . pip-deps/bin/activate

6. pip install fantastico

7. fantastico_setup_project.sh python3.2 my_project

The last step might take a while because it will also install all fantastico dependencies (e.g sphinx, sqlalchemy, ...).
Please make sure your replace python3.2 with the correct python version. In order to test the current project do the
following:

1. fantastico_run_dev_server

2. Access http://localhost:12000/mvc/hello-world

Your newly project is setup correctly and it runs fantastico default samples project.

3.1.1 Create first component

After the new project it’s correctly setup we can create our first component.

1. . pip-deps/bin/activate

2. export FANTASTICO_ACTIVE_CONFIG=my_project.settings.BaseProfile

3. cd my_project

4. mkdir component1

5. cd component1

6. mkdir static

7. Paste an image into static folder (e.g first_photo.jpg)

8. touch __init__.py

11

http://localhost:12000/mvc/hello-world

fantastico Documentation, Release 0.7.0-b141

9. touch hello_world.py

10. Paste the code listed below into hello_world.py

from fantastico.mvc.base_controller import BaseController
from fantastico.mvc.controller_decorators import ControllerProvider, Controller
from webob.response import Response

@ControllerProvider()
class HelloWorldController(BaseController):

’’’This is a very simple controller provider.’’’

@Controller(url="/component1/hello")
def say_hello(self, request):

’’’This method simply returns an html hello world text.’’’

msg = "Hello world from my project"

return Response(content_type="text/html", text=msg)

11. fantastico_dev_server

12. Now you can access Hello route.

13. Now you can access First photo route.

3.1.2 Customize dev server

For understanding how to customize dev server please read Development mode

3.1.3 Customize uwsgi prod server

By design, each Fantastico project provides built in support for running it on uWSGI server. If you want to customize
uwsgi parameters for your server you can follow these steps:

1. cd $FANTASTICO_PROJECT_FOLDER/deployment/conf/nginx

2. nano fantastico-uwsgi.ini

3. Change the options you want and save the file.

4. fantastico_run_prod_server (for testing the production server).

5. Be aware that first you need an nginx configured and your project config file deployed (Read Deployment how
to).

3.2 Creating a simple TODO application

In this how to article you can find information of how you can create a TODO web application using Fantastico
framework. This tutorial works with Fantastico versions greater or equal than 0.5.0.

3.2.1 Functional requirements

The application we are going to develop must meet the following requirements:

• User must be able to create tasks.

12 Chapter 3. How to articles

http://localhost:12000/component1/hello
http://localhost:12000/component1/static/first_photo.jpg
http://uwsgi-docs.readthedocs.org/en/latest/
http://pypi.python.org/pypi/fantastico/0.5.0

fantastico Documentation, Release 0.7.0-b141

• User must be able to see all tasks.

• User must be able to quickly filter tasks.

• User must be able to complete tasks.

• User must be able to use an web application for managing tasks.

3.2.2 Overview

Figure 3.1: TODO web application powered by Fantastico.

The frontend is powered by the following API endpoints:

End-
point

HTTP
verb

HTTP Body Description

/tasks GET None Retrieves available tasks in a
paginated manner.

/tasks POST {“name”: “Task name”, “description”: “Task
description”}

Creates a new task described by
the given body.

/tasks/:task_idGET None Retrieves a specific task from
tasks collection.

/tasks/:task_idPUT {“name”: “Task name changed”, “description”:
“Task description changed”}

Updates a specific task from
tasks collection.

/tasks/:task_idDELETE None Deletes a specific task from
tasks collection.

3.2. Creating a simple TODO application 13

fantastico Documentation, Release 0.7.0-b141

3.2.3 How to sources

All tutorial source files are available on github: https://github.com/rcosnita/fantastico-todo. Each step of the tutorial
has a corresponding branch in the github repository so you can easily skip steps of this tutuorial. Though you can skip
steps we recommend you take 30 minutes and finish this step by step how to in order to fully understand the power of
Fantastico framework and how easy it is to build modern web applications using it.

3.2.4 Requirements

This tutorial requires developer to have:

1. A Debian based operating system

2. Access to a mysql database.

3. Python 3.2 or newer.

3.2.5 Next steps

Step 0 - TODO setup

Follow the steps below in order to setup todo web application project correctly:

1. git clone https://github.com/rcosnita/fantastico-todo.git fantastico-todo

2. cd fantastico-todo

3. virtualenv-3.2 –distribute pip-deps

4. . pip-deps/bin/activate

5. pip install fantastico

6. fantastico_setup_project.sh python3.2 todo * (this will take a couple of minutes because it installs all dependen-
cies).

At this moment you have a Fantastico project created and a component module holder named todo initialized. For
more information about advanced project setup you can always read Creating a new project.

Step 1 - TODO settings

In this section of the tutorial you can find information about how to correctly configure database parameters. Follow
the steps below in order to have correct settings for TODO web applications:

1. git checkout -b step-1-settings

2. Paste the code below under fantastico-todo/pip-deps/bin/activate at the end of the file.

fantastico-todo/pip-deps/bin/activate

export FANTASTICO_ACTIVE_CONFIG=todo.settings.BaseProfile
export PYTHONPATH=.

3. Paste the code below under fantastico-todo/todo/settings.py

14 Chapter 3. How to articles

https://github.com/rcosnita/fantastico-todo
https://github.com/rcosnita/fantastico-todo.git

fantastico Documentation, Release 0.7.0-b141

fantastico-todo/todo/settings.py

from fantastico.settings import BasicSettings

class BaseProfile(BasicSettings):
’’’todo web application base profile.’’’

@property
def database_config(self):

’’’This property is automatically invoked by fantastico in order to connect to database.’’’

db_config = super(BaseProfile, self).database_config

db_config["database"] = "tododb"
db_config["username"] = "todo_user"
db_config["password"] = "12345"

return db_config

4. Run the command below in order to make sure sdk is working:

fsdk --help

You should see a screen similar to the one below:

5. Execute the code below in order to create tododb database.

/usr/bin/mysql --host=localhost --user=root --password=**** --verbose -e "source sql/setup_database.sql"

Explanation

We have just configured our virtual development environment for TODO web application to use tododb with
todo_user/12345 credentials. You can of course configure more details of your connection:

• MySql host.

• MySql port.

• MySql charset.

For a complete list of database configuration in Fantastico framework please read Fantastico settings.

In addition, we created a dedicated database for TODO web application.

3.2. Creating a simple TODO application 15

fantastico Documentation, Release 0.7.0-b141

Step 2 - TODO API endpoints

In this section of TODO how to we are going to create the following API endpoints:

End-
point

HTTP
verb

HTTP Body Description

/tasks GET None Retrieves available tasks in a
paginated manner.

/tasks POST {“name”: “Task name”, “description”: “Task
description”}

Creates a new task described by
the given body.

/tasks/:task_idGET Retrieves a specific task from
tasks collection.

/tasks/:task_idPUT {“name”: “Task name changed”, “description”:
“Task description changed”}

Updates a specific task from
tasks collection.

/tasks/:task_idDELETE None Deletes a specific task from
tasks collection.

These are going to provide support for various clients which want to provide TODO functionality:

• Javascript frontend client.

• Mobile app client.

Create database

Our TODO tasks are going to be persisted by the endpoints into a MySql database (already created in previous steps).
Now, we are going to create tasks tables:

1. git checkout -b step-2-create-api

2. Paste the code below under fantastico-todo/todo/frontend/sql/module_setup.sql

CREATE TABLE IF NOT EXISTS tasks(
task_id INT NOT NULL AUTO_INCREMENT,
name VARCHAR(200) NOT NULL,
description TEXT,
status SMALLINT,
PRIMARY KEY(task_id)

);

3. Execute the following command in order to create the table into tododb database:

fsdk syncdb --db-command /usr/bin/mysql --comp-root todo

4. Create some sample uncompleted tasks in your database:

(a) Paste the code below in fantastico-todo/todo/frontend/sql/create_data.sql:

INSERT INTO tasks(name, description, status)
SELECT * FROM (SELECT ’Go buy some dog food.’, ’It is extremely important to have this by noon.’, 0) as tmp
WHERE NOT EXISTS(SELECT name FROM tasks WHERE name = ’Go buy some dog food.’);

INSERT INTO tasks(name, description, status)
SELECT * FROM (SELECT ’Write some clean code.’, ’You decide when to start this.’, 0) as tmp
WHERE NOT EXISTS(SELECT name FROM tasks WHERE name = ’Write some clean code.’);

(b) Execute the following command in order to insert above mentioned tasks into tododb database:

16 Chapter 3. How to articles

fantastico Documentation, Release 0.7.0-b141

fsdk syncdb --db-command /usr/bin/mysql --comp-root todo

Create APIs

Now that the storage is ensured and our project is configured correctly we have to create the APIs. In order to do this
follow the steps below:

1. fsdk activate-extension –name roa_discovery –comp-root todo

2. Paste the code below in fantastico-todo/todo/frontend/models/tasks.py

from fantastico.mvc import BASEMODEL
from fantastico.roa.resource_decorator import Resource
from sqlalchemy.schema import Column
from sqlalchemy.types import Integer, String, Text, SmallInteger
from todo.frontend.validators.task_validator import TaskValidator

@Resource(name="Task", url="/tasks", validator=TaskValidator)
class Task(BASEMODEL):

’’’This class provides the task model required for todo application.’’’

__tablename__ = "tasks"

task_id = Column("task_id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(200), nullable=False)
description = Column("description", Text)
status = Column("status", SmallInteger, nullable=False)

def __init__(self, name=None, description=None, status=0):
self.name = name
self.description = description
self.status = status

3. Paste the code below in fantastico-todo/todo/frontend/validators/task_validator.py

from fantastico.roa.resource_validator import ResourceValidator
from fantastico.roa.roa_exceptions import FantasticoRoaError

class TaskValidator(ResourceValidator):
’’’This is the task validator invoked automatically in create / update operations.’’’

def validate(self, resource):
’’’This method is invoked automatically in order to validate resource body.’’’

errors = []

if resource.name is None or len(resource.name) == 0:
errors.append("Name attribute is mandatory.")

if resource.status is None:
errors.append("Status attribute is mandatory.")

if len(errors) == 0:
return

raise FantasticoRoaError("\n".join(errors))

4. Run the following command in an activate fantastico-todo virtual environment:

3.2. Creating a simple TODO application 17

fantastico Documentation, Release 0.7.0-b141

fantastico_run_dev_server

5. Visit http://localhost:12000/roa/resources. You should see a response similar to the one below:

6. Visit http://localhost:12000/api/latest/tasks. You should see a response similar to the one below:

7. Visit http://localhost:12000/api/latest/tasks/1. You should receive the details for the task with unique identifier
1.

8. Additionally Create / Update / Delete operations are already working.

Step 3 - TODO frontend

In this section of this tutorial we will develop the frontend for our simple todo application. At this moment you should
already have an API which supports tasks CRUD operations. More over your can order and filter tasks collection and
you can request partial representation of the tasks. (you can find out more on ROA (Resource Oriented Architecture)
doc page).

For frontend we will quickly develop an application using Backbone.js framework.

Create models

1. git checkout -b step-3-create-frontend

2. Paste the code below under fantastico-todo/todo/frontend/static/js/bootstrap.js

/**
Copyright 2013 Cosnita Radu Viorel

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

18 Chapter 3. How to articles

http://localhost:12000/roa/resources
http://localhost:12000/api/latest/tasks
http://localhost:12000/api/latest/tasks/1

fantastico Documentation, Release 0.7.0-b141

documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*/

(function($) {
Todo = {};

Todo.Models = {};
})(jQuery);

3. Paste the code below under fantastico-todo/todo/frontend/static/js/models/resources_registry.js

/**
Copyright 2013 Cosnita Radu Viorel

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*/

(function($) {
var registry = {},

endpoint = "/roa/resources";

/**
* This model holds the object attributes of a resource. Currently it supports only fetch through collection.

*/
registry.Resource = Backbone.Model.extend({});

/**
* This collection provides access to ROA resources registered to the current project. It is recommended to code each model

* against the registry so that location changes are not breaking client side code.

*/
registry.ResourceCollection = Backbone.Collection.extend({

model: registry.Resource,
url: endpoint,
/**
* This method returns the resource url for a given resource name and version. If the version is omitted latest resource

* url is returned.

*
* @param {String} name The name of the resource we want to retrieve discovery information about.

* @param {String} version (Optional) The version of the resource we want to retrieve discovery information about.

3.2. Creating a simple TODO application 19

fantastico Documentation, Release 0.7.0-b141

* @returns The resource url extracted from ROA discovery registry (/roa/resources).

*/
getResourceUrl: function(name, version) {

version = version || "latest";

if(this.length == 0) {
throw new Error("No ROA resources registered.");

}

var resources = this.at(0),
resource = (resources.get(name) || {})[version];

if(!resource) {
throw new Error("Resource " + name + ", version " + version + " is not registered.");

}

return resource;
}

});

Todo.Models.Registry = new registry.ResourceCollection();
Todo.Models.Registry.loader = Todo.Models.Registry.fetch();

})(jQuery);

4. Paste the code below under fantastico-todo/todo/frontend/static/js/models/tasks.js

/**
Copyright 2013 Cosnita Radu Viorel

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*/

(function($) {
var tasks = {};

function getTasksUrl() {
return Todo.Models.Registry.getResourceUrl("Task");

}

tasks.Task = Backbone.Model.extend({
idAttribute: "task_id",
urlRoot: getTasksUrl

});

tasks.TaskCollection = Backbone.Collection.extend({
model: tasks.Task,
/**
* This method is overriden so that it guarantees tasks are ordered alphabetically and only id and name attributes are

20 Chapter 3. How to articles

fantastico Documentation, Release 0.7.0-b141

* returned for each available task (partial resource representation).

*/
url: function() {

var url = [getTasksUrl()];
url.push("?");

if(this._offset) {
url.push("offset=" + this._offset);

}

if(this._limit) {
url.push("&limit=" + this._limit);

}

url.push("&fields=task_id,name,status");
url.push("&order=asc(name)");

return url.join("");
},
/**
* In comparison with standard backbone collection fetch, ROA collections support pagination. This is why options is

* parsed before actually fetching the collection.

*/
fetch: function(options) {

options = options || {};

this._offset = options.offset;
this._limit = options.limit;

return Backbone.Collection.prototype.fetch.call(this, options);
},
/**
* This method save the items returned form REST ROA api to this backbone collection. Additionally it adds the total

* items counter as collection property.

*
* @param {Object} response The http response coming for /api/latest/tasks collection.

*/
parse: function(response) {

this.totalItems = response.totalItems;

return response.items;
}

});

Todo.Models.Tasks = tasks;
})(jQuery);

We have all models in place so we are going to implement the frontend of the application in the next section.

Models implementation notes In Fantastico, there is a resource registry which can be used for discovery. It is
recommended to always use it to obtain your models api urls. This will guarantee that any change of API location on
server side is automatically propagated on client side.

In addition because our application is not going to use description we optimized the client side code by using ROA
partial resource representation. More over, the resources are ordered alphabetically by name.

ROA collections support pagination out of the box and tasks client side implementation shows how easily it is to
provide it for client side code.

3.2. Creating a simple TODO application 21

fantastico Documentation, Release 0.7.0-b141

For better understanding all the concepts used in this section you can read ROA (Resource Oriented Architecture).

In addition you probably noticed that static assets are created under a special folder named static. This allows us to
easily serve static assets from a cache server or cdn in production. You can read more about this on Static assets.

Create frontend

In this section we are going to create all routes used in frontend:

1. /frontend/ui/index

2. /frontend/ui/tasks-list-menu

3. /frontend/ui/tasks-list-content

4. /frontend/ui/tasks-list-pager

This approach allows us to have a very clear separation and control of listing components of TODO application. In
order to create the frontend follow the steps below:

1. Paste the following code under fantastico-todo/todo/frontend/todo_ui.py:

’’’
Copyright 2013 Cosnita Radu Viorel

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

.. codeauthor:: Radu Viorel Cosnita <radu.cosnita@gmail.com>

.. py:module:: todo.frontend.ui
’’’

from fantastico.mvc.base_controller import BaseController
from fantastico.mvc.controller_decorators import Controller, ControllerProvider
from webob.response import Response

@ControllerProvider()
class TodoUi(BaseController):

’’’This class provides all routes used by todo frontend application.’’’

@Controller(url="/frontend/ui/index")
def get_index(self, request):

’’’This method returns the index of todo ui application.’’’

content = self.load_template("listing.html")

return Response(content)

@Controller(url="/frontend/ui/tasks-list-menu")
def get_tasks_menu(self, request):

’’’This method return the tasks list menu.’’’

22 Chapter 3. How to articles

fantastico Documentation, Release 0.7.0-b141

content = self.load_template("listing_menu.html")

return Response(content)

@Controller(url="/frontend/ui/tasks-list-content")
def get_tasks_content(self, request):

’’’This method returns the markup for tasks listing content area.’’’

content = self.load_template("listing_content.html")

return Response(content)

@Controller(url="/frontend/ui/tasks-list-pager")
def get_tasks_pager(self, request):

’’’This method returns the markup for tasks listing pagination area.’’’

content = self.load_template("listing_pager.html")

return Response(content)

The final step of this tutorial requires the creation of controller code for listing tasks and CRUD operations:

1. Paste the code below under fantastico-todo/todo/frontend/static/js/list_tasks.js:

/**
Copyright 2013 Cosnita Radu Viorel

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*/

(function($) {
TPL_TASK = [’<div class="task">’];
TPL_TASK.push(’<div class="input-group">’);
TPL_TASK.push(’’);
TPL_TASK.push(’<input type="checkbox" data-role="tasks-complete" data-tid="<%= task.get(\"task_id\") %>" />’);
TPL_TASK.push(’’);
TPL_TASK.push(’<% if(task.get("status") === 0) { %>’);
TPL_TASK.push(’<h3 class="form-control"><%= task.get(\"name\") %></h3>’);
TPL_TASK.push(’<% } else { %>’);
TPL_TASK.push(’<h3 class="form-control task-completed"><%= task.get(\"name\") %></h3>’);
TPL_TASK.push(’<% } %>’);
TPL_TASK.push("</div>");
TPL_TASK.push("<hr/>");
TPL_TASK.push("</div>");

TPL_TASK = TPL_TASK.join("");

function ListingController() {

3.2. Creating a simple TODO application 23

fantastico Documentation, Release 0.7.0-b141

this._tasks = new Todo.Models.Tasks.TaskCollection();
this._offset = 0;
this._limit = 10;
this._fetchMoreSize = 5;

};

ListingController.prototype.start = function() {
this._tfNewTask = $("#txt-new-task");
this._btnComplete = $("#btn-complete-task");
this._btnRemove = $("#btn-remove-task");
this._tasksArea = $(".tasks-area");
this._pagerText = $(".tasks-pager").find("p");
this._btnPagerFetch = $(".tasks-pager").find("button");

this._initEvents();
};

ListingController.prototype._getSelectedTasks = function() {
var ids = [],

tasksChk = this._tasksArea.find("input[data-role=’tasks-complete’]");

_.each(tasksChk, function(item) {
item = $(item);

if(!item.is(":checked")) {
return;

}

ids.push(parseInt(item.attr("data-tid")));
});

return ids;
};

ListingController.prototype._initEvents = function() {
var self = this;

this._tfNewTask.keyup(function(evt) {
if(evt.keyCode == 13) {

self._createTask(self._tfNewTask.val());

return false;
}

return true;
});

this._btnRemove.click(function() {
var ids = self._getSelectedTasks();

self._deleteTasks(ids);
});

this._btnComplete.click(function() {
var ids = self._getSelectedTasks();

self._completeTasks(ids);
});

24 Chapter 3. How to articles

fantastico Documentation, Release 0.7.0-b141

this._btnPagerFetch.click(function() {
self._fetchMoreTasks();

});

this._tasks.on("reset", function() {
self._fetchTasks();

});

this._pagerText.html("");
this._tasks.reset();

};

ListingController.prototype._fetchTasks = function() {
var response = this._tasks.fetch({"offset": this._offset,

"limit": this._limit}),
self = this;

response.done(function() {
self._tasksArea.html("");
self._tfNewTask.val("");

self._tasks.each(function(task) {
self._renderTask(task);

});

self._showPageText();
});

};

ListingController.prototype._renderTask = function(task) {
var taskUi = _.template(TPL_TASK),

model = {"task": task},
taskHtml = taskUi(model);

this._tasksArea.append(taskHtml);
};

ListingController.prototype._createTask = function(taskName) {
var task = new Todo.Models.Tasks.Task({"name": taskName, "status": 0}),

self = this;

task.save().always(function() {
self._fetchTasks();

});
};

ListingController.prototype._showPageText = function() {
var totalItems = this._tasks.totalItems,

displayedItems = Math.min(this._limit, totalItems),
pagesText = displayedItems + " out of " + totalItems;

this._pagerText.html(pagesText);
};

ListingController.prototype._deleteTasks = function(taskIds) {
this._btnRemove.button("loading");

taskIds = taskIds || [];

3.2. Creating a simple TODO application 25

fantastico Documentation, Release 0.7.0-b141

var onGoing = 0,
self = this;

function deleteWhenAllDone() {
onGoing--;

if(onGoing > 0) {
return;

}

self._btnRemove.button("reset");

self._tasks.reset();
}

_.each(taskIds, function(taskId) {
onGoing++;

var response = new Todo.Models.Tasks.Task({"task_id": taskId}).destroy().always(deleteWhenAllDone);

taskIds.push(response);
});

};

ListingController.prototype._completeTasks = function(taskIds) {
this._btnComplete.button("loading");

taskIds = taskIds || [];

var onGoing = 0,
self = this;

function completeWhenAllDone() {
onGoing--;

if(onGoing > 0) {
return;

}

self._btnComplete.button("reset");

self._tasks.reset();
}

_.each(taskIds, function(taskId) {
var task = self._tasks.get(taskId);

task.set({"status": 1});

task.save().always(completeWhenAllDone);
});

};

ListingController.prototype._fetchMoreTasks = function() {
var newLimit = this._limit + this._fetchMoreSize;

newLimit = Math.min(newLimit, this._tasks.totalItems);

26 Chapter 3. How to articles

fantastico Documentation, Release 0.7.0-b141

if(newLimit >= this._tasks.totalItems) {
this._btnPagerFetch.hide();

}

this._limit = newLimit;

this._tasks.reset();
};

Todo.Controllers.ListingController = ListingController;
})(jQuery);

2. . pip-deps/bin/activate

3. fantastico_run_dev_server

4. Done. Now you have a fully functional todo application. Access http://localhost:12000/frontend/ui/index for
seeing the results.

Step 4 - TODO activate google analytics

In this step of the tutorial we are going to activate frontend tracking solution for our newly created TODO application.
One solution would be to create a template page and included in your other pages using {% component %} tag. A
more elegant solution which does not require any code redeployment is presented below:

1. git checkout -b step-4-activate-googleanalytics

2. fsdk activate-extension –name tracking_codes –comp-root todo

3. Paste the following code under fantastico-todo/todo/sql/create_data.sql:

##
Copyright 2013 Cosnita Radu Viorel
#
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
##

DELETE FROM tracking_codes WHERE provider = ’Google Analytics’;

INSERT INTO tracking_codes(provider, script)
SELECT ’Google Analytics’, ’

<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(["_setAccount", "UA-XXXXX-X"]);
_gaq.push(["_trackPageview"]);

(function() {
var ga = document.createElement("script"); ga.type = "text/javascript"; ga.async = true;

3.2. Creating a simple TODO application 27

http://localhost:12000/frontend/ui/index

fantastico Documentation, Release 0.7.0-b141

ga.src = ("https:" == document.location.protocol ? "https://ssl" : "http://www") + ".google-analytics.com/ga.js";
var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(ga, s);

})();
</script>’;

4. fsdk syncdb -d /usr/bin/mysql -p todo

5. Paste the following code at the end of fantastico-todo/todo/frontend/views/listing.html (before </body> tag):

{% component url="/tracking-codes/ui/codes/" %}{% endcomponent %}

6. . pip-deps/bin/activate

7. fantastico_run_dev_server

8. Done. Access http://localhost:12000/frontend/ui/index and view page source. You should be able to see the
tracking code from above.

Explanation

By default, Fantastico framework provides an extension which can easily integrate tracking codes into components.
The real advantage of using this component comes from the fact that you can easily have one or multiple tracking
scripts for multiple providers. Moreover, you can manage tracking scripts at database level meaning you will never
have to redeploy your code for tracking changes.

You can read more about tracking codes extension on Tracking codes.

Known issues

If you are using a Fantastico version prior to 0.5.1 you will run into problems when running fdsk syncdb command.
In order to fix this, you must manually drop from your database the following tables:

• sample_resource_subresources

• sample_resources

Step 5 - TODO final notes

During the last 30 minutes you have created a TODO web application using Fantastico framework. You have already
noticed how easily it is to create resources and REST apis in a declarative manner without actually writing any line of
code for pagination, filtering and sorting.

Moreover, you have seen how you can keep clean markup in your projects by using Fantastico components. In the
end you added Google Analytics for tracking the performance of your TODO web application.

What’s next?

It is recommended to first take the challenges below before implementing your real life Fantastico project:

1. Send a uniquely generated cookie for uniquely identify the user session.

2. Make tasks belong to a unique user (identified by the cookie from previous step).

3. Add a category resource and try to make tasks belong to one or more categories. Be aware, that GET collection
and GET item from collection ROA APIs works perfectly with relationships.

4. Separate ROA APIs domain from application domain. (e.g http://api.todo.com).

28 Chapter 3. How to articles

http://localhost:12000/frontend/ui/index
http://api.todo.com

fantastico Documentation, Release 0.7.0-b141

5. You are ready to rock.

Resources

It is recommended to read Fantastico documentation in order to get full details about each concept which was presented
in this tutorial. You can see the application from this tutorial together with user session improvements and separation
of api from application domain deployed on: http://todo.fantastico.scrum-expert.ro/frontend/ui/index.

3.3 MVC How to

In this article you can see how to assemble various pieces together in order to create a feature for a virtual blog
application. If you follow this step by step guide in the end you will have a running blog which can list all posts.

3.3.1 Code the model

Below you can find how to easily create post model.

1. Create a new package called blog

2. Create a new package called blog.models

3. Create a new module called posts and paste the following code into it:

class Post(BaseModel):
__tablename__ = "posts"

id = Column("id", Integer, primary_key=True)
blog_id =
title = Column("title", String(150))
tags = Column("tags", String(150))
created_date = Column("registered_date", DateTime(), default=datetime.now)
content = Column("content", Text(100))

Now you have a fully functional post model mapped over posts table.

3.3.2 Code the controller

1. Create a new package called blog.controllers

2. Create a new module called blog_controller and paste the following code into it:

@ControllerProvider()
class BlogsController(BaseController):

@Controller(url="/blogs/(?P<blog_id>\\d{1,})/posts/$", method="GET",
models={"Post": "fantastico.plugins.blog.models.posts.Post"])

def list_blog_posts(self, request, blog_id):
Post = request.models.Post

blog_id = int(blog_id)

posts = Post.get_records_paged(start_record=1, end_record=100,
sort_expr=[ModelSort(Post.model_cls.created_date, ModelSort.ASC),

ModelSort(Post.title, ModelSort.DESC)],
filter_expr=[ModelFilter(Post.model_cls.blog_id, blog_id, ModelFilter.EQ)])

3.3. MVC How to 29

http://todo.fantastico.scrum-expert.ro/frontend/ui/index

fantastico Documentation, Release 0.7.0-b141

response = Response()
response.text = self.load_template("/posts_listing.html",

{"posts": posts,
"blog_id": blog_id})

return response

Now you have a fully functional controller that will list first 100 posts.

3.3.3 Code the view

1. Create a new folder called blog.views

2. Create a new view under blog.views called posts_listing.html and paste the following code into it:

<html>
<head>

<title>List all available posts from blog {{blog_id}}</title>
</head>

<body>

{% for post in posts %}

{{post.title}} | {{post.created_date}}
{% endfor %}

</body>
</html>

3.3.4 Test your application

1. Start fantastico dev server by executing script run_dev_server.sh (Development mode)

2. Open a browser and visit http://localhost:12000/blogs/1/posts.

3.4 Deployment how to

In this how to we guide you to Fantastico deployment to production. Below you can find various deployment scenarios
that can be used for various needs.

30 Chapter 3. How to articles

http://localhost:12000/blogs/1/posts

fantastico Documentation, Release 0.7.0-b141

3.4.1 Low usage (simplest scenario)

Above diagram described the simplest scenario for rolling out Fantastico to production. You can use this scenario for
minimalistic web applications like:

• Presentation website

• Personal website

• Blog

We usually recommend to start with this deployment scenario and the migrate to more complex scenarios when you
application requires it.

Advantages Disadvantages
Extremely easy to deploy Does not scale well for more than couple of requests /

second
Minimal os configuration All components are bundled on one node without any

failover.
Automatic scripts for configuring the os Does not support vertical scaling out of the box.
Easy to achieve horizontal scaling for all components
at once.

Static files are not served from a cdn.

3.4. Deployment how to 31

fantastico Documentation, Release 0.7.0-b141

Setup

1. Install Fantastico framework on the production machine (Installation manual.).

2. Goto $FANTASTICO_ROOT

3. export ROOT_PASSWD=<your root password>

4. fantastico_setup_low_usage_<os_distribution) –ipaddress <desired_ip> –vhost-name <desired_vhost> –uwsgi-
port <uwsgi port> –root-folder <desired root folder> –modules-folder <desired modules folder> (e.g fan-
tastico_setup_low_usage_ubuntu.sh –ipaddress 127.0.0.1 –vhost-name fantastico-framework.com –uwsgi-port
12090 –root-folder ‘pwd‘ –modules-folder /fantastico/samples)

5. Done.

It is usually a good idea to change the number of parallel connections supported by your linux kernel:

1. sudo nano /etc/sysctl.conf

2. Search for net.core.somaxconn.

3. If it does not exist you can add net.core.somaxconn = 8192 to the bottom of the file.

4. Restart the os.

3.4.2 Low usage AWS

This scenario is a little bit more complex than Low usage (simplest scenario) but it provides some advantages:

Advantages Disadvantages
Can be autoscaled. Requires AWS EC2 instances
Easier crash recovery Requires manual configuration
Very easy monitoring support (CloudWatch) Requires AWS EBS.

Requires some AWS know how.
Static files are not served from a cdn.

32 Chapter 3. How to articles

fantastico Documentation, Release 0.7.0-b141

This scenario is recommended if you want to rollout you application on AWS infrastructure. Usually it is non expensive
to do this as it requires micro instances and low cost storage. For more information about AWS required components
read:

1. AWS Instance types.

2. AWS EBS.

Setup

1. Create an AWS account. (AWS Getting Started).

2. Create an EC2 instance from AWS Management Console (EC2 setup).

3. SSH on EC2 instance.

4. Install Fantastico framework on the production machine (Installation manual.).

5. Goto $FANTASTICO_ROOT

6. fantastico_setup_low_usage_<os_distribution).sh (e.g fantastico_setup_low_usage_ubuntu.sh)

7. Done.

Optimization

This scenario can be easily optimized by using AWS S3 buckets for static files. This ensures faileover for static files
and very easy horizontal scaling for sites. Below you can find the new diagram:

You can read more about AWS S3 storage on http://aws.amazon.com/s3/. In this version of fantastico there is no way
to sync static module files with S3 buckets. This feature is going to be implemented in upcoming Fantastico features.
As a workaround you can easily copy static folder content from each module on S3 using the tool provided from AWS
Management Console.

You can see how to use AWS Management Console S3 tool on http://www.youtube.com/watch?v=1qrjFb0ZTm8

3.4. Deployment how to 33

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ebs/
http://aws.amazon.com/documentation/gettingstarted/
http://www.youtube.com/watch?v=WBro0TEAd7g
http://aws.amazon.com/s3/
http://www.youtube.com/watch?v=1qrjFb0ZTm8

fantastico Documentation, Release 0.7.0-b141

Setup with S3

1. export ROOT_PASSWD=<your root password>

2. Create an AWS account. (AWS Getting Started).

3. Create an EC2 instance from AWS Management Console (EC2 setup).

4. SSH on EC2 instance.

5. Install Fantastico framework on the production machine (Installation manual.).

6. Goto $FANTASTICO_ROOT/deployment

7. fantastico_setup_low_usage_s3_<os_distribution).sh –ipaddress <desired_ip> –vhost-name <desired_vhost> –
uwsgi-port <uwsgi port> –root-folder <desired root folder> –modules-folder <desired modules folder> (e.g fan-
tastico_setup_low_usage_s3_ubuntu.sh –ipaddress 127.0.0.1 –vhost-name fantastico-framework.com –uwsgi-
port 12090 –root-folder ‘pwd‘ –modules-folder /fantastico/samples)

8. Done.

It is usually a good idea to change the number of parallel connections supported by your linux kernel:

1. sudo nano /etc/sysctl.conf

2. Search for net.core.somaxconn.

3. If it does not exist you can add net.core.somaxconn = 8192 to the bottom of the file.

4. Restart the os.

3.5 Static assets

By default, static assets can be any file that is publicly available. Most of the time, here you can place:

• css files

• png, jpg, gif files

• downloadable pdf

• movie files

• any other file format you can think about

For Production environment, requests to these files are handled by the web server you are using. You only need to
place them under static folder of your component (Component model).

There are several scenario in which Fantastico projects are deployed which influence where your component static
files are stored. I recommend you read Deployment how to section.

3.5.1 Static assets on dev

Of course, on development environment you are not required to have a web server in front of your Fantastico dev
server. For this purpose, fantastico framework provides a special controller which can easily serve static files. Even
though it works as expected, please do not use it in production. It does not send headers required by browser for
caching purposes.

Static assets routes are the same between prod and dev environments.

34 Chapter 3. How to articles

http://aws.amazon.com/documentation/gettingstarted/
http://www.youtube.com/watch?v=WBro0TEAd7g

fantastico Documentation, Release 0.7.0-b141

Favicon

If you want your site to also have an icon which is automatically presented by browsers, in your project root folder do
the following:

1. mkdir static

2. cd static

3. Copy your favicon.ico file in here.

3.5.2 Static assets on prod

There is no difference between static assets on dev and static assets on production from routes point of view. From
handling requests point of view, nginx configuration for your project takes care of serving static assets and sending
correct http caching headers.

3.5. Static assets 35

fantastico Documentation, Release 0.7.0-b141

36 Chapter 3. How to articles

CHAPTER

FOUR

FANTASTICO FEATURES

4.1 Exceptions hierarchy

class fantastico.exceptions.FantasticoError(msg=None, http_code=400)

FantasticoError is the base of all exceptions raised within fantastico framework. It describe common attributes
that each concrete fantastico exception must provide. By default all fantastico exceptions inherit FantasticoError
exception. We do this because each raised unhandled FantasticoError is map to a specific exception response.
This strategy guarantees that at no moment errors will cause fantastico framework wsgi container to crash.

http_code
This method returns the http code on which this exception is mapped.

class fantastico.exceptions.FantasticoControllerInvalidError(msg=None,
http_code=400)

This exception is raised whenever a method is decorated with fantastico.mvc.controller_decorators.Controller
and the number of arguments is not correct. Usually developer forgot to add request as argument to the con-
troller.

class fantastico.exceptions.FantasticoClassNotFoundError(msg=None, http_code=400)
This exception is raised whenever code tries to dynamically import and instantiate a class which can not be
resolved.

class fantastico.exceptions.FantasticoNotSupportedError(msg=None, http_code=400)
This exception is raised whenever code tries to do an operation that is not supported.

37

fantastico Documentation, Release 0.7.0-b141

class fantastico.exceptions.FantasticoSettingNotFoundError(msg=None,
http_code=400)

This exception is raised whenever code tries to obtain a setting that is not available in the current fantastico
configuration.

class fantastico.exceptions.FantasticoDuplicateRouteError(msg=None,
http_code=400)

This exception is usually raised by routing engine when it detects duplicate routes.

class fantastico.exceptions.FantasticoNoRoutesError(msg=None, http_code=400)
This exception is usually raised by routing engine when no loaders are configured or no routes are registered.

class fantastico.exceptions.FantasticoRouteNotFoundError(msg=None, http_code=400)
This exception is usually raised by routing engine when a requested url is not registered.

class fantastico.exceptions.FantasticoNoRequestError(msg=None, http_code=400)
This exception is usually raised when some components try to use fantastico.request from WSGI environ before
fantastico.middleware.request_middleware.RequestMiddleware was executed.

class fantastico.exceptions.FantasticoContentTypeError(msg=None, http_code=400)
This exception is usually thrown when a mismatch between request accept and response content type. In Fan-
tastico we think it’s mandatory to fulfill requests correctly and to take in consideration sent headers.

class fantastico.exceptions.FantasticoHttpVerbNotSupported(http_verb)
This exception is usually thrown when a route is accessed with an http verb which does not support.

http_verb
This property returns the http verb that caused the problems.

class fantastico.exceptions.FantasticoTemplateNotFoundError(msg=None,
http_code=400)

This exception is usually thrown when a controller tries to load a template which it does not found.

class fantastico.exceptions.FantasticoIncompatibleClassError(msg=None,
http_code=400)

This exception is usually thrown when we want to decorate / inject / mixin a class into another class that does
not support it. For instance, we want to build a fantastico.mvc.model_facade.ModelFacade with
a class that does not extend BASEMODEL.

class fantastico.exceptions.FantasticoDbError(msg=None, http_code=400)
This exception is usually thrown when a database exception occurs. For one good example where this is used
see fantastico.mvc.model_facade.ModelFacade.

class fantastico.exceptions.FantasticoDbNotFoundError(msg=None, http_code=400)
This exception is usually thrown when an entity does not exist but we try to update it. For one good example
where this is used see fantastico.mvc.model_facade.ModelFacade.

class fantastico.exceptions.FantasticoInsufficientArgumentsError(msg=None,
http_code=400)

This exception is usually thrown when a component extension received wrong number of arguments. See
fantastico.rendering.component.Component.

class fantastico.exceptions.FantasticoUrlInvokerError(msg=None, http_code=400)
This exception is usually thrown when an internal url invoker fails. For instance, if a component reusage
rendering fails then this exception is raised.

4.2 Request lifecycle

In this document you can find how a request is processed by fantastico framework. By default WSGI applications use
a dictionary that contains various useful keys:

38 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

• HTTP Headers

• HTTP Cookies

• Helper keys (e.g file wrapper).

In fantastico we want to hide the complexity of this dictionary and allow developers to use some standardized objects.
Fantastico framework follows a Request / Response paradigm. This mean that for every single http request only
one single http response will be generated. Below, you can find a simple example of how requests are processed by
fantastico framework:

In order to not reinvent the wheels fantastico relies on WebOb python framework in order to correctly generate request
and response objects. For more information read WebOB Doc.

4.2.1 Request middleware

To have very good control of how WSGI environ is wrapped into WebOb request object a middleware component is
configured. This is the first middleware that is executed for every single http request.

class fantastico.middleware.request_middleware.RequestMiddleware(app)
This class provides the middleware responsible for converting wsgi environ dictionary into a request. The result
is saved into current WSGI environ under key fantastico.request. In addition each new request receives an
identifier. If subsequent requests are triggered from that request then they will also receive the same request id.

4.2.2 Request context

In comparison with WebOb Fantastico provides a nice improvement. For facilitating easy development of code, each
fantastico request has a special attribute called context. Below you can find the attributes of a request context object:

• settings facade (Fantastico settings)

• session (not yet supported)

• language The current preferred by user. This is determined based on user lang header.

• user (not yet supported)

4.2. Request lifecycle 39

http://docs.webob.org/en/latest/reference.html

fantastico Documentation, Release 0.7.0-b141

class fantastico.middleware.request_context.RequestContext(settings, language)
This class holds various attributes useful giving a context to an http request. Among other things we need to be
able to access current language, current session and possible current user profile.

language
Property that holds the current language that must be used during this request.

settings
Property that holds the current settings facade used for accessing fantastico configuration.

wsgi_app
Property that holds the WSGI application instance under which the request is handled.

4.2.3 Obtain request language

class fantastico.locale.language.Language(code)
Class used to define how does language object looks like. There are various use cases for using language but the
simplest one is in request context object:

language = request.context.language

if language.code = "en_us":
print("English (US) language").

else:
raise Exception("Language %s is not supported." % language.code)

code
Property that holds the language code. This is readonly because once instantiated we mustn’t be able to
change it.

4.2.4 Obtain settings using request

It is recommended to use request.context object to obtain fantastico settings. This hides the complexity of choosing
the right configuration and accessing attributes from it.

installed_middleware = request.context.settings.get("installed_middleware")

print(installed_middleware)

For more information about how to configure Fantastico please read Fantastico settings.

4.2.5 Redirect using request

In Fantastico is fairly simply to redirect client to a given location.

class fantastico.routing_engine.custom_responses.RedirectResponse(destination,
query_params=None,
redi-
rect_status=302)

This class encapsulates the logic for programatically redirecting client from a fantastico controller.

@Controller(url="/redirect/example")
def redirect_to_google(self, request):

return request.redirect("http://www.google.ro/")

40 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

There are some special cases when you would like to pass some query parameters to redirect destination. This
is also easily achievable in Fantastico:

@Controller(url="/redirect/example")
def redirect_to_google(self, request):

return request.redirect("http://www.google.ro/search",
query_params=[("q", "hello world")])

The above example will redirect client browser to http://www.google.ro/search?q=hello world

4.3 Routing engine

Fantastico routing engine is design by having extensibility in mind. Below you can find the list of concerns for routing
engine:

1. Support multiple sources for routes.

2. Load all available routes.

3. Select the controller that can handle the request route (if any available).

class fantastico.routing_engine.router.Router(settings_facade=<class ‘fantas-
tico.settings.SettingsFacade’>)

This class is used for registering all available routes by using all registered loaders.

get_loaders()
Method used to retrieve all available loaders. If loaders are not currently instantiated they are by these

4.3. Routing engine 41

http://www.google.ro/search?q=helloworld

fantastico Documentation, Release 0.7.0-b141

method. This method also supports multi threaded workers mode of wsgi with really small memory foot-
print. It uses an internal lock so that it makes sure available loaders are instantiated only once per wsgi
worker.

handle_route(url, environ)
Method used to identify the given url method handler. It enrich the environ dictionary with a new entry
that holds a controller instance and a function to be executed from that controller.

register_routes()
Method used to register all routes from all loaders. If the loaders are not yet initialized this method will
first load all available loaders and then it will register all available routes. Also, this method initialize
available routes only once when it is first invoked.

4.3.1 Routes loaders

Fantastico routing engine is designed so that routes can be loaded from multiple sources (database, disk locations, and
others). This give huge extensibility so that developers can use Fantastico in various scenarios:

• Create a CMS that allows people to create new pages (mapping between page url / controller) is hold in database.
Just by adding a simple loader in which the business logic is encapsulated allows routing engine extension.

• Create a blog that loads articles from disk.

I am sure you can find other use cases in which you benefit from this extension point.

4.3.2 How to write a new route loader

Before digging in further details see the RouteLoader class documentation below:

class fantastico.routing_engine.routing_loaders.RouteLoader(settings_facade)
This class provides the contract that must be provided by each concrete implementation. Each route loader is
responsible for implementing its own business logic for loading routes.

class DummyRouteLoader(RouteLoader):
def __init__(self, settings_facade):

self_settings_facade = settings_facade

def load_routes(self):
return {"/index.html": {"http_verbs": {

"GET": "fantastico.plugins.static_assets.StaticAssetsController.resolve_text"
}

},
"/images/image.png": {"http_verbs": {

"GET": "fantastico.plugins.static_assets.StaticAssetsController.resolve_binary"
}

}
}

load_routes()
This method must be overriden by each concrete implementation so that all loaded routes can be handled
by fantastico routing engine middleware.

As you can, each concrete route loader receives in the constructor settings facade that can be used to access fantastico
settings. In the code example above, DummyRouteLoader maps a list of urls to a controller method that can be used
to render it. Keep in mind that a route loader is a stateless component and it can’t in anyway determine the wsgi
environment in which it is used. In addition this design decision also make sure clear separation of concerned is
followed.

42 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

Once your RouteLoader implementation is ready you must register it into settings profile. The safest bet is to add it
into BaseSettings provider. For more information read Fantastico settings.

4.3.3 Configuring available loaders

You can find all available loaders for the framework configured in your settings profile. You can find below a sample
configuration of available loaders:

class CustomSettings(BasicSettings):
@property
def routes_loaders(self):

return ["fantastico.routing_engine.custom_loader.CustomLoader"]

The above configuration tells Fantastico routing engine that only CustomLoader is a source of routes. If you want to
learn more about multiple configurations please read Fantastico settings.

4.3.4 DummyRouteLoader

class fantastico.routing_engine.dummy_routeloader.DummyRouteLoader(settings_facade)
This class represents an example of how to write a route loader. DummyRouteLoader is available in all
configurations and it provides a single route to the routing engine: /dummy/route/loader/test. Integration tests
rely on this loader to be configured in each available profile.

display_test(request)
This method handles /dummy/route/loader/test route. It is expected to receive a response with status
code 400. We do this for being able to test rendering and also avoid false positive security scans messages.

4.3.5 Routing middleware

Fantastico routing engine is designed as a standalone component. In order to be able to integrate it into Fantastico
request lifecycle (:doc:/features/request_response.) we need an adapter component.

class fantastico.middleware.routing_middleware.RoutingMiddleware(app,
router_cls=<class
‘fantas-
tico.routing_engine.router.Router’>)

Class used to integrate routing engine fantastico component into request / response lifecycle. This middleware
is responsible for:

1.instantiating the router component and make it available to other components / middlewares through WSGI
environment.

2.register all configured fantastico loaders (fantastico.routing_engine.router.Router.get_loaders()).

3.register all available routes (fantastico.routing_engine.router.Router.register_routes()).

4.handle route requests (fantastico.routing_engine.router.Router.handle_route()).

It is important to understand that routing middleware assume a WebOb request available into WSGI environ.
Otherwise, fantastico.exceptions.FantasticoNoRequestError will be thrown. You can read
more about request middleware at Request lifecycle.

4.3. Routing engine 43

fantastico Documentation, Release 0.7.0-b141

4.4 Model View Controller

Fantastico framework provides quite a powerful model - view - controller implementation. Here you can find details
about design decisions and how to benefit from it.

4.4.1 Classic approach

Usually when you want to work with models as understood by MVC pattern you have in many cases boiler plate code:

1. Write your model class (or entity)

2. Write a repository that provides various methods for this model class.

3. Write a facade that works with the repository.

4. Write a web service / page that relies on the facade.

5. Write one or multiple views.

As this is usually a good in theory, in practice you will see that many methods from facade are converting a data
transfer object to an entity and pass it down to repository.

4.4.2 Fantastico approach

Fantastico framework provides an alternative to this classic approach (you can still work in the old way if you really
really want).

class fantastico.mvc.controller_decorators.Controller(url, method=’GET’, mod-
els=None, **kwargs)

This class provides a decorator for magically registering methods as route handlers. This is an extremely impor-
tant piece of Fantastico framework because it simplifies the way you as developer can define mapping between
a method that must be executed when an http request to an url is made:

@ControllerProvider()
class BlogsController(BaseController):

@Controller(url="/blogs/", method="GET",
models={"Blog": "fantastico.plugins.blog.models.blog.Blog"])

def list_blogs(self, request):
Blog = request.models.Blog

blogs = Blog.get_records_paged(start_record=0, end_record=5,
sort_expr=[ModelSort(Blog.model_cls.create_date, ModelSort.ASC,

ModelSort(Blog.model_cls.title, ModelSort.DESC)],
filter_expr=ModelFilterAnd(

ModelFilter(Blog.model_cls.id, 1, ModelFilter.GT),
ModelFilter(Blog.model_cls.id, 5, ModelFilter.LT))))

convert blogs to desired format. E.g: json.

return Response(blogs)

The above code assume the following:

1.As developer you created a model called blog (this is already mapped to some sort of storage).

2.Fantastico framework generate the facade automatically (and you never have to know anything about
underlining repository).

3.Fantastico framework takes care of data conversion.

44 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

4.As developer you create the method that knows how to handle /blog/ url.

5.Write your view.

You can also map multiple routes for the same controller:

Below you can find the design for MVC provided by Fantastico framework:

fn_handler
This property retrieves the method which is executed by this controller.

classmethod get_registered_routes()
This class methods retrieve all registered routes through Controller decorator.

method
This property retrieves the method(s) for which this controller can be invoked. Most of the time only one
value is retrieved.

models
This property retrieves all the models required by this controller in order to work correctly.

url
This property retrieves the url used when registering this controller.

If you want to find more details and use cases for controller read Controller section.

4.4.3 Model

A model is a very simple object that inherits fantastico.mvc.models.BaseModel.

In order for models to work correctly and to be injected correctly into controller you must make sure you have a valid
database configuration in your settings file. By default, fantastico.settings.BasicSettings provides a
usable database configuration.

fantastico.settings.BasicSettings
@property
def database_config(self):

return {"drivername": "mysql+mysqldb",

4.4. Model View Controller 45

fantastico Documentation, Release 0.7.0-b141

"username": "fantastico",
"password": "12345",
"host": "localhost",
"port": 3306,
"database": "fantastico",
"show_sql": True}

By default, each time a new build is generated for fantastico each environment is validated to ensure connectivity to
configured database works.

There are multiple ways in how a model is used but the easiest way is to use an autogenerated model facade:

class fantastico.mvc.model_facade.ModelFacade(model_cls, session)
This class provides a generic model facade factory. In order to work Fantastico base model it is recommended
to use autogenerated facade objects. A facade object is binded to a given model and given database session.

count_records(filter_expr=None)
This method is used for counting the number of records from underlining facade. In addition it applies the
filter expressions specified (if any).

records = facade.count_records(
filter_expr=ModelFilterAnd(

ModelFilter(Blog.id, 1, ModelFilter.GT),
ModelFilter(Blog.id, 5, ModelFilter.LT)))

Parameters filter_expr (list) – A list of fantastico.mvc.models.model_filter.ModelFilterAbstract
which are applied in order.

Raises fantastico.exceptions.FantasticoDbError This exception is raised whenever an excep-
tion occurs in retrieving desired dataset. The underlining session used is automatically roll-
backed in order to guarantee data integrity.

create(model)
This method add the given model in the database.

class PersonModel(BASEMODEL):
__tablename__ = "persons"

id = Column("id", Integer, autoincrement=True, primary_key=True)
first_name = Column("first_name", String(50))
last_name = Column("last_name", String(50))

def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade(PersonModel, fantastico.mvc.SESSION)

model = facade.new_model("John", last_name="Doe")
facade.create(model)

Returns The newly generated primary key or the specified primary key (it might be a scalar
value or a tuple).

Raises fantastico.exceptions.FantasticoDbError Raised when an unhandled exception occurs.
By default, session is rollback automatically so that other consumers can still work as ex-
pected.

46 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

delete(model)
This method deletes a given model from database. Below you can find a simple example of how to use
this:

class PersonModel(BASEMODEL):
__tablename__ = "persons"

id = Column("id", Integer, autoincrement=True, primary_key=True)
first_name = Column("first_name", String(50))
last_name = Column("last_name", String(50))

def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade(PersonModel, fantastico.mvc.SESSION)
model = facade.find_by_pk({PersonModel.id: 1})
facade.delete(model)

Raises fantastico.exceptions.FantasticoDbError Raised when an unhandled exception occurs.
By default, session is rollback automatically so that other consumers can still work as ex-
pected.

find_by_pk(pk_values)
This method returns the entity which matches the given primary key values.

class PersonModel(BASEMODEL):
__tablename__ = "persons"

id = Column("id", Integer, autoincrement=True, primary_key=True)
first_name = Column("first_name", String(50))
last_name = Column("last_name", String(50))

def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade(PersonModel, fantastico.mvc.SESSION)
model = facade.find_by_pk({PersonModel.id: 1})

get_records_paged(start_record, end_record, filter_expr=None, sort_expr=None)
This method retrieves all records matching the given filters sorted by the given expression.

records = facade.get_records_paged(start_record=0, end_record=5,
sort_expr=[ModelSort(Blog.create_date, ModelSort.ASC,

ModelSort(Blog.title, ModelSort.DESC)],
filter_expr=ModelFilterAnd(

ModelFilter(Blog.id, 1, ModelFilter.GT),
ModelFilter(Blog.id, 5, ModelFilter.LT))))

Parameters

• start_record (int) – A zero indexed integer that specifies the first record number.

• end_record (int) – A zero indexed integer that specifies the last record number.

• filter_expr (list) – A list of fantastico.mvc.models.model_filter.ModelFilterAbstract
which are applied in order.

4.4. Model View Controller 47

fantastico Documentation, Release 0.7.0-b141

• sort_expr (list) – A list of fantastico.mvc.models.model_sort.ModelSort
which are applied in order.

Returns A list of matching records strongly converted to underlining model.

Raises fantastico.exceptions.FantasticoDbError This exception is raised whenever an excep-
tion occurs in retrieving desired dataset. The underlining session used is automatically roll-
backed in order to guarantee data integrity.

model_cls
This property holds the model based on which this facade is built.

model_pk_cols
This property returns the model primary key columns as defined in the model cls.

new_model(*args, **kwargs)
This method is used to obtain an instance of the underlining model. Below you can find a very simple
example:

class PersonModel(BASEMODEL):
__tablename__ = "persons"

id = Column("id", Integer, autoincrement=True, primary_key=True)
first_name = Column("first_name", String(50))
last_name = Column("last_name", String(50))

def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

facade = ModelFacade(PersonModel, fantastico.mvc.SESSION)

model = facade.new_model("John", last_name="Doe")

Parameters

• args (list) – A list of positional arguments we want to pass to underlining model construc-
tor.

• kwargs (dict) – A dictionary containing named parameters we want to pass to underlining
model constructor.

Returns A BASEMODEL instance if everything is ok.

session
This property returns the current sqlalchemy session used to access database.

update(model)
This method updates an existing model from the database based on primary key.

class PersonModel(BASEMODEL):
__tablename__ = "persons"

id = Column("id", Integer, autoincrement=True, primary_key=True)
first_name = Column("first_name", String(50))
last_name = Column("last_name", String(50))

def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

48 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

facade = ModelFacade(PersonModel, fantastico.mvc.SESSION)

model = facade.new_model("John", last_name="Doe")
model.id = 5
facade.update(model)

Raises

• fantastico.exceptions.FantasticoDbNotFoundError – Raised when the given model
does not exist in database. By default, session is rollback automatically so that other
consumers can still work as expected.

• fantastico.exceptions.FantasticoDbError – Raised when an unhandled exception oc-
curs. By default, session is rollback automatically so that other consumers can still work
as expected.

If you are using the Fantastico MVC support you don’t need to manually create a model facade instance because
fantastico.mvc.controller_decorators.Controller injects defined models automatically.

4.4.4 View

A view can be a simple html plain file or html + jinja2 enriched support. You can read more about Jinja2 here.
Usually, if you need some logical block statements in your view (if, for, ...) it is easier to use jinja 2 template engine.
The good news is that you can easily embed jinja 2 markup in your views and it will be rendered automatically.

4.4.5 Controller

A controller is the brain; it actually combines a model execute some business logic and pass data to the desired view
that needs to be rendered. In some cases you don’t really need view in order to provide the logic you want:

• A REST Web service.

• A RSS feed provider.

• A file download service

Though writing REST services does not require a view, you can load external text templates that might be useful for
assembling the response:

• An invoice generator service

• An xml file that must be filled with product data

• A vCard. export service.

If you want to read a small tutorial and to start coding very fast on Fantastico MVC read MVC How to. Controller API
is documented fantastico.mvc.controller_decorator.Controller.

class fantastico.mvc.controller_registrator.ControllerRouteLoader(settings_facade=<class
‘fantas-
tico.settings.SettingsFacade’>,
scanned_folder=None,
ig-
nore_prefix=None)

This class provides a route loader that is capable of scanning the disk and registering only the routes that contain
a controller decorator in them. This happens when Fantastico servers starts. In standard configuration it ignores
tests subfolder as well as test_* / itest_* modules.

4.4. Model View Controller 49

http://jinja.pocoo.org/docs/
http://en.wikipedia.org/wiki/VCard

fantastico Documentation, Release 0.7.0-b141

load_routes()
This method is used for loading all routes that are mapped through
fantastico.mvc.controller_decorators.Controller decorator.

scanned_folders
This property returns the currently scanned folder from where mvc routes are collected.

class fantastico.mvc.base_controller.BaseController(settings_facade)
This class provides common methods useful for every concrete controller. Even if no type checking is done in
Fantastico it is recommended that every controller implementation inherits this class.

curr_request
This property returns the current http request being processed.

get_component_folder()
This method is used to retrieve the component folder name under which this controller is defined.

load_template(tpl_name, model_data=None, get_template=<function get_template at 0x1ff4408>,
enable_global_folder=False)

This method is responsible for loading a template from disk and render it using the given model data.

@ControllerProvider()
class TestController(BaseController):

@Controller(url="/simple/test/hello", method="GET")
def say_hello(self, request):

return Response(self.load_template("/hello.html"))

The above snippet will search for hello.html into component folder/views/.

Available filters

class fantastico.mvc.models.model_filter.ModelFilterAbstract
This is the base class that defines the contract a model filter must follow. A model filter is a class that decouples
sqlalchemy framework from Fantastico MVC. This is required because in the future we might want to change
the ORM that powers Fantastico without breaking all existing code.

For seeing how to implement filters (probably you won’t need to do this) see some existing filters:

•fantastico.mvc.models.model_filter.ModelFilter

•fantastico.mvc.models.model_filter_compound.ModelFilterCompound

•fantastico.mvc.models.model_filter_compound.ModelFilterAnd

•fantastico.mvc.models.model_filter_compound.ModelFilterOr

build(query)
This method is used for appending the current filter to the query using sqlalchemy specific language.

50 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

get_expression()
This method is used for retrieving native sqlalchemy expression held by this filter.

class fantastico.mvc.models.model_filter_compound.ModelFilterCompound(operation,
*args)

This class provides the api for compounding ModelFilter objects into a specified sql alchemy operation.

build(query)
This method transform the current compound statement into an sql alchemy filter.

get_expression()
This method transforms calculates sqlalchemy expression held by this filter.

model_filters
This property returns all ModelFilter instances being compound.

class fantastico.mvc.models.model_filter.ModelFilter(column, ref_value, operation)
This class provides a model filter wrapper used to dynamically transform an operation to sql alchemy filter
statements. You can see below how to use it:

id_gt_filter = ModelFilter(PersonModel.id, 1, ModelFilter.GT)

build(query)
This method appends the current filter to a query object.

column
This property holds the column used in the current filter.

get_expression()
Method used to return the underlining sqlalchemy exception held by this filter.

static get_supported_operations()
This method returns all supported operations for model filter. For now only the following operations are
supported:

•GT - greater than comparison

•GE - greater or equals than comparison

•EQ - equals comparison

•LE - less or equals than comparison

•LT - less than comparison

•LIKE - like comparison

•IN - in comparison.

operation
This property holds the operation used in the current filter.

ref_value
This property holds the reference value used in the current filter.

class fantastico.mvc.models.model_filter_compound.ModelFilterAnd(*args)
This class provides a compound filter that allows and conditions against models. Below you can find a simple
example:

id_gt_filter = ModelFilter(PersonModel.id, 1, ModelFilter.GT)
id_lt_filter = ModelFilter(PersonModel.id, 5, ModelFilter.LT)
name_like_filter = ModelFilter(PersonModel.name, ’%%john%%’, ModelFilter.LIKE)

complex_condition = ModelFilterAnd(id_gt_filter, id_lt_filter, name_like_filter)

4.4. Model View Controller 51

fantastico Documentation, Release 0.7.0-b141

class fantastico.mvc.models.model_filter_compound.ModelFilterOr(*args)
This class provides a compound filter that allows or conditions against models. Below you can find a simple
example:

id_gt_filter = ModelFilter(PersonModel.id, 1, ModelFilter.GT)
id_lt_filter = ModelFilter(PersonModel.id, 5, ModelFilter.LT)
name_like_filter = ModelFilter(PersonModel.name, ’%%john%%’, ModelFilter.LIKE)

complex_condition = ModelFilterOr(id_gt_filter, id_lt_filter, name_like_filter)

class fantastico.mvc.models.model_sort.ModelSort(column, sort_dir=None)
This class provides a filter that knows how to sort rows from a query result set. It is extremely easy to use:

id_sort_asc = ModelSort(PersonModel.id, ModelSort.ASC)

build(query)
This method appends sort_by clause to the given query.

column
This property holds the column we are currently sorting.

get_expression()
This method returns the sqlalchemy expression held by this filter.

get_supported_sort_dirs()
This method returns all supported sort directions. Currently only ASC / DESC directions are supported.

sort_dir
This property holds the sort direction we are currently using.

4.4.6 Database session management

We all know database session management is painful and adds a lot of boiler plate code. In fantastico you don’t need to
manage database session by yourself. There is a dedicated middleware which automatically ensures there is an active
session ready to be used:

class fantastico.middleware.model_session_middleware.ModelSessionMiddleware(app,
set-
tings_facade=<class
‘fan-
tas-
tico.settings.SettingsFacade’>)

This class is responsible for managing database connections across requests. It also takes care of connection
data pools. By default, the middleware is automatically configured to open a connection. If you don’t need mvc
(really improbable but still) you simply need to change your project active settings profile. You can read more
on fantastico.settings.BasicSettings

4.5 CORS

In Fantastico framework, CORS (cross origin resource sharing) can be enabled easily per each individual controller
method.

class fantastico.mvc.controller_decorators.CorsEnabled
This class provides the cors behavior which ensures all cors required headers are appended to response. It is
designed to be used on controller methods decorated with @Controller attribute.

52 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

@Controller(url="/api/filesystem/(?P<filename>.*)$", method="OPTIONS")
@CorsEnabled()
def upload_file_options(self, request, filename):

pass

As you can see there is no need to implement cors controller methods because the decorator does all the job.

In addition to CorsEnabled decorator, you can also configure the framework to globally append some headers to each
response:

1. Go to your settins profile (see fantastico.settings.BasicSettings)

2. Change global_response_headers property and add all desired headers (e.g: Access-Control-Allow-Origin:
“*”)

4.6 ROA (Resource Oriented Architecture)

Resource Oriented Architecture (REST) is incredible popular nowadays for the following reasons:

• Increased scalability of applications.

• Easy integration of systems.

• Intuitive modelling of business problems.

• Stateful imperative programming pains removed.

You can find many information about advantages of REST and why it is recommended to use such an architecure. For
further reading you can visit http://en.wikipedia.org/wiki/Representational_state_transfer.

In Fantastisco framework we firmly encourage REST approach into projects. We even go a step further in this direction,
by standardising REST APIs and providing REST APIs generator over implemented models.

4.6.1 Examples

4.6.2 Application settings stored in database

Imagine you have a model called AppSetting meant to define custom settings attributes which influence your applica-
tion.

class AppSetting(BASEMODEL):
__tablename__ = "app_settings"

id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(50), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name, value):
self.name = name
self.value = value

In a standard MVC (Model View Controller) web application once you have defined the above mentioned fantastico
model you would have to do the following: (for providing minimal CRUD)

1. Create a fantastico.mvc.controller_decorators.Controller

2. Implement listing of custom settings

(a) Support pagination.

4.6. ROA (Resource Oriented Architecture) 53

http://en.wikipedia.org/wiki/Representational_state_transfer

fantastico Documentation, Release 0.7.0-b141

(b) Support filtering.

(c) Support ordering.

3. Implement individual custom setting retrieval (by id).

4. Implement Create custom setting.

5. Implement Update custom setting.

6. Implement Delete custom setting.

7. For each operation implemented provide validation logic.

8. For each operation implemented provide error handling logic.

This is an extremely repetitive task and involves quite a lot of boiler plate. In addition no standard is imposed for how
pagination, sorting and filtering work.

A more convenient way for this problem is to provide some additional information about the model:

@Resource(name="app-setting", url="/app-settings")
class AppSetting(BASEMODEL):

__tablename__ = "app_settings"

id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(50), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name, value):
self.name = name
self.value = value

Once the model is decorated, I expect to have a fully functional API which I can easily invoke through HTTP calls:

• GET - /api/latest/app-settings - list all application settings (supports filtering, ordering and pagination)

• POST - /api/latest/app-settings - create a new app setting.

• PUT - /api/latest/app-settings/:id - update an existing application setting.

• DELETE - /api/latest/app-settings/:id - delete an existing application setting.

4.6.3 Versioning

It is always a good practice to support API versioning. Going a step further with AppSetting resource:

@Resource(name="app-setting", url="/app-settings", version=1.0)
class AppSetting(BASEMODEL):

__tablename__ = "app_settings"

id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(50), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name, value):
self.name = name
self.value = value

@Resource(name="app-setting", url="/app-settings", version=2.0)
class AppSettingV2(BASEMODEL):

__tablename__ = "app_settings"

54 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(80), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name, value):
self.name = name
self.value = value

The above example will actually provide the following endpoints which can be easily accessible:

• /api/1.0/app-settings

• /api/2.0/app-settings

• /api/latest/app-settings (which at this moment points to the most recent version of the api)

If we want to retrieve all application settings using version 1.0 we open a browser and point it to /api/1.0/app-settings.
For avoiding multiple APIs chaos we strongly encourage to use the latest available API.

4.6.4 Validation

Each resource requires validation for create / update operations. Validation is harder to be achieved through code
introspection so in Fantastico for each defined resource you can define a validator which will be invoked automatically.

class AppSettingValidator(ResourceValidator):
def validate(self, resource, request, existing_resource_id=None):

errors = []

if resource.name == "unsupported":
errors.append("Invalid setting name: %s" % resource.name)

if len(resource.value) == 0:
errors.append("Setting %s value can not be empty. %s" % resource.name)

if len(errors) == 0:
return

raise FantasticoRoaError("\n".join(errors))

@Resource(name="app-setting", url="/app-settings", version=2.0, validator=AppSettingValidator)
class AppSettingV2(BASEMODEL):

id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(80), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name, value):
self.name = name
self.value = value

If no validator is provided no validation is done on the given resource. Also, it is important to always remember that
validators are only invoked for Create and Update:

• POST - /api/latest/app-settings - create a new app setting. (validate method will be invoked).

• PUT - /api/latest/app-settings/:id - update an existing app setting. (validate method will be invoked).

We are aware that there are some common validation cases which can be reused:

1. Email validation

2. Phone number validation

4.6. ROA (Resource Oriented Architecture) 55

fantastico Documentation, Release 0.7.0-b141

3. Credit Card number validation

All common validation cases are provided out of the box as methods part of ResourceValidator class. You can easily
use them into your resource validator.

There are some rare cases when a resource contains sensitive data (e.g user passwords / credit card numbers). In order
to alter or suppress such sensitive data you can simply override format_resource method. Below you can find a simple
example of user data retrieval where password is never sent back to client even if requested:

class UserValidator(ResourceValidator):
def format_resource(self, user, request):

user.password = None

With the above example, whenever you request GET on /users or GET on /user/:userid password will be suppressed.

4.6.5 Partial object representation

There are cases when a resource contains many fields but you actually need only a few of them:

@Resource(name="address", url="/addresses", version=1.0)
class Address(BASEMODEL):

id = Column("id", Integer, primary_key=True, autoincrement=True)
line1 = Column("line1", String(200), nullable=False)
line2 = Column("line2", String(200))
line3 = Column("line3", String(200))
line4 = Column("line4", String(200))
line5 = Column("line5", String(200))
line6 = Column("line6", String(200))
city = Column("city", String(80))
country = Column("country", String(80))
zip_code = Column("zip_code", String(10))

def __init__(self, line1=None, line2=None, line3=None, line4=None, line5=None, line6=None,
city=None, country=None, zip_code=None):

self.line1 = line1
self.line2 = line2
self.line3 = line3
self.line4 = line4
self.line5 = line5
self.line6 = line6
self.city = city
self.country = country
self.zip_code = zip_code

When working with the Address resource there will be cases when we do not need all fields to be transferred to client.
For this, partial representation is supported out of the box into Fantastico:

// retrieve only city,zip_code and line1 of a given address
var url = "/api/1.0/addresses/1?fields=city,zip_code,line1";

A possible response for this request might be:

{
city: "Bucharest",
zip_code: "B00001",
line1: "First line of this wonderful address"

}

56 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

fields Query parameter is optional. If you omit this query parameter all fields are retrieved in the response. fields
query parameter makes sense for:

1. Listing a collection

2. Retrieving information about an individual item.

All other operations simply ignore fields.

4.6.6 Resource composed attributes

There are resources which have attributes which points to another resource:

@Resource(name="person", url="/persons", version=1.0,
subresources={"bill_address": ["bill_address_id"],

"mail_address": ["mail_address_id"],
"ship_address:" ["ship_address_id"]})

class Person(BASEMODEL):
__tablename__ = "persons"

id = Column("id", Integer, primary_key=True, autoincrement=True)
first_name = Column("first_name", String(80))
last_name = Column("last_name", String(50))
bill_address_id = Column("bill_address_id", ForeignKey("addresses.id"))
bill_address = relationship(Address, primaryjoin=bill_address_id == Address.id)
ship_address_id = Column("ship_address_id", ForeignKey("addresses.id"))
ship_address = relationship(Address, primaryjoin=ship_address_id == Address.id)
mail_address_id = Column("ship_address_id", ForeignKey("addresses.id"))
ship_address = relationship(Address, primaryjoin=mail_address_id == Address.id)

The above definition shows you how to mark the subresources of person resource. By default they will not be retrieved
in requests. Only subresource identifier keys pointing from person to various address objects are retrieved. If you
want to obtain details about a specific address (e.g bill_address) you can use example below:

var url = "/api/1.0/persons/1?fields=first_name, last_name, bill_address(line1, city, zip_code)"

The above example url might return:

{
"first_name": "John",
"last_name": "Doe",
"bill_address": {

"line1": "First line of this wonderful address",
"city": "Bucharest",
"zip_code": "B00001"

}
}

Composed attributes usage is limited to below mentioned operations:

• Listing collections.

• Retrieving information about an individual item.

• First level subresources.

We do not support update / create of multiple resources using one single request.

4.6. ROA (Resource Oriented Architecture) 57

fantastico Documentation, Release 0.7.0-b141

4.6.7 Security

Fantastico provides a compliant OAuth 2 RFC implementation which is also integrated with ROA. For more informa-
tion about enabling OAuth 2 authorization on ROA please read Controllers security.

4.6.8 Advantages

• Extremely fast development of uniform APIs which behave predictable.

• Extremely easy to enforce exception handling logic.

• Extremely easy to enforce security for APIs.

• Extremely easy to keep APIs in sync with resource changes.

• DRY (don’t repeat yourself).

REST API standard

In this document you can find the standard behavior imposed for Resource generated apis (ROA (Resource Oriented
Architecture)). For better understanding how APIs will behave let’s assume we have the following resource defined:

@Resource(name="app-setting", url="/app-settings", version=2.0)
class AppSettingV2(BASEMODEL):

__tablename__ = "app_settings"

id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(80), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name, value):
self.name = name
self.value = value

Resource collection

Each resource will have an API entry point which lists all available resources of same type (e.g AppSettingV2). This
entry point supports the following additional operations:

• Pagination of resources.

• Sorting of resources.

• Filtering of resources.

The main entry point for AppSettingV2 collection of resources is /api/2.0/app-settings.

HTTP Verb URL Description
GET /api/2.0/app-settings?offset=0&limit=100 Get the first 100 settings.
GET /api/2.0/app-settings?order=desc(name) Order settings by name (descending).
GET /api/2.0/app-settings?filter=<complex filter> See Filtering.
POST /api/2.0/app-settings Create a new custom setting

58 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

Pagination When requesting a given resource collection a subset of this collection will be retrived.

• offset - defines which is the start record of the API. (Default value is 0)

• limit - defines the maximum number of items I want to retrieve. (Default value is 10)

A possible result for AppSettingV2 collection retrieval looks like:

{
"items":

[{"id": 1, "name": "default_locale", "value": "en_US"},
{"id": 2, "name": "vat", "value": 0.19}],

"totalItems": 1000
}

Sorting When requesting a given resource collection sorted you can specify the sorting criteria:

• order - Containing asc / desc function calls.

• asc - is a function with one argument which tells API an ascending order by given attribute.

// retrieve all application settings ascending ordered by name
var url = "/api/2.0/app-settings?order=asc(name)";

• desc - is a function with one argument which tells API a descending order by given attribute.

// retrieve all application settings ordered descending ordered by value.
var url = "/api/2.0/app-settings?order=desc(value)";

A possible result for AppSettingV2 collection retrieval (/api/2.0/app-settings?order=desc(name)) looks like:

{
"items":

[{"id": 2, "name": "vat", "value": 0.19},
{"id": 1, "name": "default_locale", "value": "en_US"}],

"totalItems": 1000
}

Filtering In fantastico, APIs filtering is done by following a very simple Resource Query Language (RQL):

HTTP
Verb

URL Description

GET /api/2.0/app-settings?filter=eq(name, “vat”) Get all settings named vat.
GET /api/2.0/app-settings?filter=like(name, “%vat%”) Get all settings which name contains vat.
GET /api/2.0/app-settings?filter=gt(value, 0.19) Get all settings which have value greater than

0.19.
GET /api/2.0/app-settings?filter=ge(value, 0.19) Get all settings which have value greater /

equals than / with 0.19.
GET /api/2.0/app-settings?filter=lt(value, 0.19) Get all settings which have value less than 0.19.
GET /api/2.0/app-settings?filter=le(value, 0.19) Get all settings which have value less / equals

than / with 0.19.
GET /api/2.0/app-settings?filter=in(name, [”vat”,

“default_locale”])
Get all settings which name is vat or
default_locale.

GET /api/2.0/app-settings?filter=and(eq(name, “vat”),
eq(value, “en_US”))

Get all settings which name is vat and value is
en_US.

GET /api/2.0/app-settings?filter=or(eq(name, “vat”),
eq(value, “en_US”))

Get all settings which name is vat or value is
en_US.

4.6. ROA (Resource Oriented Architecture) 59

fantastico Documentation, Release 0.7.0-b141

You can see in the above example that the query language supported by Fantastico APIs facilitate very complex
filtering on resources.

Resource item

A collection is composed of multiple items (same resource type). You can used individual item endpoints in order to:

1. Update an existing item.

2. Delete an existing item.

HTTP Verb URL Description
POST /api/2.0/app-settings Create a new application setting.
PUT /api/2.0/app-settings/1 Update application setting uniquely identified by id 1.
DELETE /api/2.0/app-settings/1 Delete application setting uniquely identified by id 1.

Create a new item In order to create a new resource (e.g application setting resource) you must use the collection
entry point and do a POST request:

POST /api/2.0/app-settings
Content-Type: application/json
Content-Length: 49

{"name": "default_user_locale", "value": "en_US"}

Update an existing item In order to update an default_locale application setting resource you must do the following
request:

PUT /api/2.0/app-settings/1
Content-Type: application/json
Content-Length: 44

{"name": "default_locale", "value": "ro_RO"}

Of course partial requests are also supported:

PUT /api/2.0/app-settings/1
Content-Type: application/json
Content-Length: 18

{"value": "ro_RO"}

It is recommended to send the minimum amount of data to the API in order to optimize your application.

Delete an existing item Delete requests are pretty simple as they do not have any body in the response.

REST Responses

When working with resources API it is important to understand what responses might be returned in order to correctly
consume them into your clients. In this document you can find success / exception responses coming from APIs.

Common responses

For each call there are some common responses that might be returned by APIs:

60 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

Internal Server Error When working in distributed environments there are unexpected situations occuring (server
failing, dns failing, and so on). In all this cases a 500 HTTP Status code will be returned and an html generated page
will be sent in the body of the error. Do not make assumptions about the format of this response as it might change in
the future.

Concrete errors In Fantastico generated APIs, concrete errors follows a given format:

{
"error_code": <a numeric error code used for uniquely identifying the situation>,
"error_description": <a user friendly message in English describing the error>,
"error_details": <an http link where you can find more details about the error which occured>

}

Resource Item

Retrieve resource item When retrieving a resource from a collection (GET /api/2.0/app-settings/1) the following
responses might be returned:

• 200 OK

200 OK
Content-Type: application/json
Content-Length: 53

{"id": 1, "name": "default_locale", "value": "en_US"}

• 404 Not Found

404 Not Found
Content-Type: application/json
Content-Length: 160

{"error_code": 10001, "error_description": "Resource 1 does not exist.", "error_details": "https://rcosnita.github.com/fantastico/html/features/roa/1000x.html"}

Create a new resource item When creating a resource into a collection (POST /api/2.0/app-settings) the following
responses might be returned:

• 201 Created

201 Created
Content-Type: application/json
Content-Length: 0
Location: /api/2.0/app-settings/123

If you want to fetch the newly created resource just follow the location header.

• 400 Bad Request

400 Bad Request
Content-Type: application/json
Content-Length: 173

{"error_code": 10010, "error_description": "Resource 1 requires field (name|value).", "error_details": "https://rcosnita.github.com/fantastico/html/features/roa/1000x.html"}

4.6. ROA (Resource Oriented Architecture) 61

fantastico Documentation, Release 0.7.0-b141

Update an existing resource

When updating an existing resource (PUT /api/2.0/app-settings) the following responses might be returned:

• 204 No Content

204 No Content
Content-Type: application/json
Content-Length: 0

• 400 Bad Request

400 Bad Request
Content-Type: application/json
Content-Length: 173

{"error_code": 10010, "error_description": "Resource 1 requires field (name|value).", "error_details": "https://rcosnita.github.com/fantastico/html/features/roa/1000x.html"}

Delete an existing resource When deleting an existing resource (DELETE /api/2.0/app-settings) the following
responses might be returned:

• 204 No Content

204 No Content
Content-Type: application/json
Content-Length: 0

• 400 Bad Request

400 Bad Request
Content-Type: application/json
Content-Length:

{"error_code": 10020, "error_description": "Resource 1 is still in use.", "error_details": "https://rcosnita.github.com/fantastico/html/features/roa/1000x.html"}

Bulk creation of items Fantastico APIs do not support bulk creation of items. We do not intend to add this kind of
capability.

62 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

ROA Technical Summary

class fantastico.roa.resource_decorator.Resource(name, url, version=1.0, subre-
sources=None, validator=None,
user_dependent=False)

This class provides the main way for defining resources. Below you can find a very simple example for defining
new resources:

@Resource(name="app-setting", url="/app-settings")
class AppSetting(BASEMODEL):

id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(50), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name=None, value=None):
self.name = name
self.value = value

Starting from Fantastico version 0.6 ROA resources support OAuth2 authorization. Because of this, resources
can now be user dependent or user independent. In order for authorization to work as expected for resources
which are available only to certain users you can use the following code snippet:

@Resource(name="app-setting", url="/app-settings", user_dependent=True)
class AppSetting(BASEMODEL):

id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(50), unique=True, nullable=False)
value = Column("value", Text, nullable=False)
user_id = Column("user_id", Integer, nullable=False)

def __init__(self, name=None, value=None, user_id=None):
self.name = name
self.value = value
self.user_id = user_id

If you do not define a user_id property for user dependent resources a runtime exception is raised. In order to
find out more about OAuth2 authorization implemented into fantastico please read: OAUTH2.

model
This read only property holds the model of the resource.

name
This read only property holds the name of the resource.

4.6. ROA (Resource Oriented Architecture) 63

fantastico Documentation, Release 0.7.0-b141

subresources
This read only property holds the subresources of this resource. A resource can identify a subresource by
one or multiple (composite uniquely identified resources) resource attributes.

@Resource(name="person", url="/persons", version=1.0,
subresources={"bill_address": ["bill_address_id"],

"mail_address": ["mail_address_id"],
"ship_address:" ["ship_address_id"])

class Person(BASEMODEL):
id = Column("id", Integer, primary_key=True, autoincrement=True)
first_name = Column("first_name", String(80))
last_name = Column("last_name", String(50))
bill_address_id = Column("bill_address_id", ForeignKey("addresses.id"))
bill_address = relationship(Address, primaryjoin=bill_address_id == Address.id)
ship_address_id = Column("ship_address_id", ForeignKey("addresses.id"))
ship_address = relationship(Address, primaryjoin=ship_address_id == Address.id)
mail_address_id = Column("ship_address_id", ForeignKey("addresses.id"))
ship_address = relationship(Address, primaryjoin=mail_address_id == Address.id)

url
This read only property holds the url of the resource.

user_dependent
This read only property returns True if user is owned only by one resource and False otherwise. It is really
important to understand the impact of the property when set to True:

1.Every GET on resource root url will also receive a filter user_id from access_token == re-
source.model.user_id

2.Every GET on a specific resource id will be validated also on user_id field.

3.Every POST for creating a new resource will automatically assign resource to user_id found in access_token. There is an
exception when the resource does not require create scopes.

4.Every PUT on a specific resource id will also check to ensure the user from the access_token owns
the resource.

5.Every DELETE on a specific resource id will also check to ensure the user from the access_token
owns the resource.

validator
This property returns the validator type which must be used for this resource for creating / updating it. You
can read more about it on fantastico.roa.resource_validator.ResourceValidator.

version
This read only property holds the version of the resource.

class fantastico.roa.resources_registry.ResourcesRegistry
This class provide the methods for registering resources into Fantastico framework and locating them by url or
name and version. As a Developer you will not usually need access to this class.

all_resources()
This method returns a list of all registered resources order by name and version. It is extremely useful for
introspecting Fantastico ROA platform.

available_resources
This readonly property returns the indexed resources by name.

available_url_resources
This readonly property returns the indexed resources by urk.

64 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

find_by_name(name, version=’latest’)
This method returns a registered resource under the given name and version.

Parameters

• name (string) – The resource name.

• version (string) – The numeric version of the resource or latest.

Returns The resource found or None.

Return type fantastico.roa.resource_decorator.Resource

find_by_url(url, version=’latest’)
This method returns a registered resource under the given url and version.

Parameters

• name (string) – The resource name.

• version (string) – The numeric version of the resource or latest.

Returns The resource found or None.

Return type fantastico.roa.resource_decorator.Resource

register_resource(resource)
This method register a new resource into Fantastico framework. It first checks against name, url and
version collision in order to detect as early as possible errors with the current defined resources.

Parameters resource (fantastico.roa.resource_decorator.Resource) – The
resource instance we want to register into Fantastico ROA registry.

Raises fantastico.roa.roa_exceptions.FantasticoRoaDuplicateError

This exception is raised when:

• resource name and version already registered.

• resource url already registered.

unregister_resource(name, version)
This method unregister a resource version. If the given resource is not found no exception is raised.
Once a resource is unregistered latest version is recalculated. The resource is completely removed from
AVAILABLE_RESOURCES and AVAILABLE_URLS dictionaries.

Parameters

• name (string) – Resource name.

• version (float) – Resource version. If you specify latest it will have no effect.

class fantastico.roa.resources_registrator.ResourcesRegistrator(settings_facade,
file_patterns=None,
folder_pattern=None)

This class provides the algorithm for registering all defined resources. Resources discovered by this class are
decorated by fantastico.roa.resource_decorator.Resource. In the constructor of this class
you can define special naming convention for discovered resources (through regex). Default behavior is to scan
only in models folder / subfolders in all available files.

In addition this class is also designed to be a route provider. This guarantees that at start time, all resources will
be registered correctly.

load_routes()
This method simple triggers resources registration and returns empty routes. Using this mechanism guar-
antees that routing engine will also discover ROA resources.

4.6. ROA (Resource Oriented Architecture) 65

fantastico Documentation, Release 0.7.0-b141

register_resources(path)
This method scans all files and folders from the given path, match the filenames against registered file
patterns and import all ROA resources.

class fantastico.contrib.roa_discovery.discovery_controller.RoaDiscoveryController(settings_facade,
reg-
istry_cls=None)

This class provides the routes for introspecting Fantastico registered resources through ROA. It is extremely
useful to surf using your browser and to not be required to hardcode links in your code. Typically, you will want
to code your client side applications against resources name and you are going to use this controller to find the
location of those records.

By default, all ROA resources are mapped on /api/ relative to current project root. You can easily change
this behavior by modifying the settings of your application (fantastico.settings.BasicSettings -
property roa_api_url)

handle_list_resources_options(*args, **kwargs)
This method handles all OPTIONS cors requests coming for resources registry listing.

list_registered_resources(*args, **kwargs)
This method list all registered resources as well as a link to their entry point.

// ROA api is mapped on a subdomain: roa.fantasticoproject.com
// listing is done by GET http://fantasticoproject.com/roa/resources HTTP/1.1

{
"Person": {1.0 : "http://roa.fantasticoproject.com/1.0/persons",

"latest": "http://roa.fantasticoproject.com/latest/persons"},
"Address": {1.0 : "http://roa.fantasticoproject.com/1.0/addresses",

2.0 : "http://roa.fantasticoproject.com/2.0/addresses",
"latest": "http://roa.fantasticoproject.com/latest/addresses"}

}

// ROA api is mapped on a relative path of the project: http://fantasticoproject.com/api/
// listing is done by GET http://fantasticoproject.com/roa/resources HTTP/1.1

{
"Person": {1.0 : "http://fantasticoproject.com/api/1.0/persons",

"latest": "http://roa.fantasticoproject.com/api/latest/persons"},
"Address": {1.0 : "http://roa.fantasticoproject.com/api/1.0/addresses",

2.0 : "http://roa.fantasticoproject.com/api/2.0/addresses",
"latest": "http://roa.fantasticoproject.com/api/latest/addresses"}

}

class fantastico.roa.query_parser.QueryParser
This class provides ROA query parser functionality. It provides methods for transforming filter and sorting
expressions (REST API standard) into mvc filters (Model View Controller).

parse_filter(filter_expr, model)
This method transform the given filter expression into mvc filters.

Parameters

• filter_expr – The filter string expression we want to convert to query objects.

• model – The model used to describe the resource on which the requests are done.

Returns The newly created mvc query object.

Return type fantastico.mvc.models.model_filter.ModelFilterAbstract

66 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

parse_sort(sort_expr, model)
This method transform the given sort expression into mvc sort filter.

Parameters

• filter_expr – The filter string expression we want to convert to query objects.

• model – The model used to describe the resource on which the requests are done.

Returns The newly created mvc query object.

Return type fantastico.mvc.models.model_sort.ModelSort

class fantastico.roa.query_parser_operations.QueryParserOperation(parser)
This class defines the contract for a query parser operation.

add_argument(argument)
This method add a new argument to the parser operation.

build_filter(model)
This method builds the model filter (fantastico.mvc.models.model_filter.ModelFilter).

get_filter(model)
This method validates the current operation and build the filter.

get_grammar_rules()
This method returns the rules required to interpret this operation.

return {
"(": [(self.TERM, "("), (self.RULE, self.REGEX_TEXT), (self.RULE, ","), (self.RULE, self.REGEX_TEXT),

(self.RULE, ")")],
}

Grammar rules simply describe the tokens which come after operator + symbol. For instance, eq(is
followed by two comma separated arguments.

get_grammar_table(new_mixin)
This method returns a dictionary describing the operator + symbol rule and action.

return {
"(": ("eq", "(", lambda: new_mixin(QueryParserOperationBinaryEq)),
")": None

}

Parameters new_mixin (function) – New mixin described a factory method required to cor-
rectly pass current operation to parser.

Returns A dictionary describing the grammar table for this operator.

get_token()
This method returns the token which maps on this operation.

validate(model)
This method validates the given operation and argument in order to ensure a filter can be built.

Raises fantastico.roa.query_parser_exceptions.QueryParserOperationInvalidError
Whenever the current operation attributes are invalid.

class fantastico.roa.query_parser_operations.QueryParserOperationBinary(parser)
This class provides the validation / build logic for binary operations.

build_filter(model)
This method builds a binary filter.

4.6. ROA (Resource Oriented Architecture) 67

fantastico Documentation, Release 0.7.0-b141

get_grammar_rules()
This method returns the grammar rules supported by binary operators.

get_grammar_table(new_mixin)
The grammar table supported by binary operators.

validate(model)
This method ensures that three arguments were passed.

class fantastico.roa.query_parser_operations.QueryParserOperationBinaryEq(parser)
This class provides the eq operator which can compare two arguments for equality.

get_token()
This method returns the equality token supported by ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationBinaryGt(parser)
This class provides the gt operator which can compare two arguments for greater than relation.

get_token()
This method returns the greater than token supported by ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationBinaryGe(parser)
This class provides the ge operator which can compare two arguments for greater or equal than relation.

get_token()
This method returns the greater equals token supported by ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationBinaryLt(parser)
This class provides the lt operator which can compare two arguments for less than relation.

get_token()
This method returns the less than token supported by ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationBinaryLe(parser)
This class provides the le operator which can compare two arguments for less or equal than relation.

get_token()
This method returns the less equal than token supported by ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationBinaryIn(parser)
This class provides the in operator which can compare a value with a possible list of values.

get_token()
This method returns in token supported by ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationBinaryLike(parser)
This class provides the like operator which can compare two arguments for similarity.

get_token()
This method returns like token supported by ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationCompound(parser,
com-
pound_filter_cls=None)

This class provides the parser for compound filter or. It will recursively parse each argument and in the end will
return a compatible fantastico.mvc.model_filter_compound.ModelFilterCompound. Each
concrete class must specify the compound filter type to use.

build_filter(model)
This method builds the compound filter based on the parsed arguments of this operation.

get_grammar_rules()
This method returns the grammar rules supported by binary operators.

68 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

get_grammar_table(new_mixin)
The grammar table supported by binary operators.

validate(model)
This method validates all arguments passed to this compound filter.

class fantastico.roa.query_parser_operations.QueryParserOperationOr(parser)
This class provides a query parser for or compound filtering.

get_token()
This method returns or compound token for ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationAnd(parser)
This class provides a query parser for and compound filtering.

get_token()
This method returns and compound token for ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationSort(parser,
sort_dir=None)

This class provides base support for sort operations: asc / desc.

build_filter(model)
This method builds the sorting model.

get_grammar_rules()
This method returns the grammar rules supported by binary operators.

get_grammar_table(new_mixin)
The grammar table supported by binary operators.

validate(model)
This method validates sorting argument passed to this operation.

class fantastico.roa.query_parser_operations.QueryParserOperationSortAsc(parser)
This class provides asc sort operation.

get_token()
This method returns asc sort token for ROA query language.

class fantastico.roa.query_parser_operations.QueryParserOperationSortDesc(parser)
This class provides desc sort operation.

get_token()
This method returns desc sort token for ROA query language.

class fantastico.roa.resource_json_serializer.ResourceJsonSerializer(resource_ref)
This class provides the methods for serializing a given resource into a dictionary and deserializing a dictionary
into a resource.

serialize / deserialize a resource without subresources
json_serializer = ResourceJsonSerializer(AppSetting)
resource_json = json_serializer.serialize(AppSetting("simple-setting", "0.19"))
resource = json_serializer.deserialize(resource)

deserialize(body)
This method converts the given body into a concrete model (if possible).

Parameters body (dict) – A JSON object we want to convert to the model compatible with this
serializer.

Returns A model instance initiated with attributes from the given dictionary.

4.6. ROA (Resource Oriented Architecture) 69

fantastico Documentation, Release 0.7.0-b141

Raises fantastico.roa.resource_json_serializer_exceptions.ResourceJsonSerializerError
Whenever given body contains entries which are not supported by resource underlining
model.

serialize(model, fields=None)
This method serialize the given model into a json object.

Parameters

• model – The model we want to convert to JSON object.

• fields (str) – A list of fields we want to include in result. Read more on Partial object
representation

Returns A dictionary containing all required attributes.

Return type dict

Raises fantastico.roa.resource_json_serializer_exceptions.ResourceJsonSerializerError
Whenever requested fields for serialization are not found in model attributes.

Exceptions

class fantastico.roa.roa_exceptions.FantasticoRoaError(msg, http_code=400)
This class provides the core error used within Fantastico ROA layer. Usually, more concrete exceptions are
raised by ROA layers.

class fantastico.roa.roa_exceptions.FantasticoRoaDuplicateError(msg,
http_code=400)

This concrete exception is used to notify user that multiple resources with same name and version or url and
version can not be registered multiple times.

class fantastico.roa.query_parser_exceptions.QueryParserOperationInvalidError(msg,
http_code=400)

This exception notifies the query parser that something is wrong with the current operation arguments.

class fantastico.roa.resource_json_serializer_exceptions.ResourceJsonSerializerError(msg,
http_code=400)

This class provides a concrete exception used when serializing / deserializing resource models.

API generic controller

class fantastico.roa.resource_validator.ResourceValidator
This class provides the base for all validators which can be used for resources.

class AppSettingValidator(ResourceValidator):
def validate(self, resource, request, existing_resource_id=None):

errors = []

if resource.name == "unsupported":
errors.append("Invalid setting name: %s" % resource.name)

if len(resource.value) == 0:
errors.append("Setting %s value can not be empty. %s" % resource.name)

if len(errors) == 0:
return

raise FantasticoRoaError(errors)

70 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

def format_collection(self, resources, request):
we can safely retrieve the full collection of resources so nothing has to be done here.

def format_resource(self, resource, request):
we can safely retrieve the resource so nothing has to be done here.

def on_post_create(self, resource, request):
override this only if you want to trigger additional actions after a resource creation.

def on_post_update(self, resource, request):
override this only if you want to trigger additional actions after a resource update.

def on_post_delete(self, resource, requesT):
override this only if you want to trigger addition actions after a resource delete.

Every method from validator receives the current http request in order to give access to resource validators to
security context and other contexts which might be necessary.

format_collection(resources, request)
This method must be overriden by each subclass in order to provide custom logic which must be executed
after a collection is fetched from database. By default, this method simply iterates over the list of available
resources and invoke format_resource.

Usually you will want to override this method in order to suppress sensitive data to be sent to clients.

format_resource(resource, request)
This method must be overriden by each subclass in order to provide custom logic which must be executed
after a resource is fetched.

Usually you will want to override this method in order to suppress sensitive data to be sent to clients.

on_post_create(resource, request)
This method must be overriden by each subclass which wants to receive notifications after a resource has
been successfully created.

on_post_delete(resource, request)
This method must be overriden by each subclass which wants to receive notifications after a resource has
been successfully deleted.

on_post_update(resource, request)
This method must be overriden by each subclass which wants to receive notifications after a resource has
been successfully updated.

on_pre_create(resource, request)
This method must be overriden by each subclass which wants to receive notifications about a pending
create resource operation.

on_pre_delete(resource, request)
This method must be overriden by each subclass which wants to receive notifications about a pending
delete resource operation.

on_pre_update(resource, request)
This method must be overriden by each subclass which wants to receive notifications about a pending
update resource operation.

validate(resource, request, existing_resource_id=None)
This method must be overriden by each subclass in order to provide the validation logic required for
the given resource. The resource received as an argument represents an instance of the model used
to describe the resource. This method can raise unexpected exceptions. It is recommended to use
fantastico.roa.roa_exceptions.FantasticoRoaError

4.6. ROA (Resource Oriented Architecture) 71

fantastico Documentation, Release 0.7.0-b141

Moreover, there are special cases when you need the existing resource id. The easiest way to achieve this
is to look at existing_resource_id argument..

validate_missing_attr(resource, attr_name)
This method provides a simple validation for ensuring given attr_name exists and it’s not empty into the
specified resource.

class fantastico.contrib.roa_discovery.roa_controller.RoaController(settings_facade,
re-
sources_registry_cls=<class
‘fantas-
tico.roa.resources_registry.ResourcesRegistry’>,
model_facade_cls=<class
‘fantas-
tico.mvc.model_facade.ModelFacade’>,
conn_manager=<module
‘fantas-
tico.mvc’
from
‘/mnt/jenkins_ebs/continous_integration/fantastico_doc_workspace/fantastico/mvc/__init__.py’>,
json_serializer_cls=<class
‘fantas-
tico.roa.resource_json_serializer.ResourceJsonSerializer’>,
query_parser_cls=<class
‘fantas-
tico.roa.query_parser.QueryParser’>)

This class provides dynamic routes for ROA registered resources. All CRUD operations are supported out of
the box. In addition error handling is automatically provided by this controller.

create_item(*args, **kwargs)
This method provides the route for adding new resources into an existing collection. The API is json only
and invoke the validator as described in ROA spec. Usually, when a resource is created successfully a
similar answer is returned to the client:

201 Created
Content-Type: application/json
Content-Length: 0
Location: /api/2.0/app-settings/123

Below you can find all error response codes which might be returned when creating a new resource:

•10000 - Whenever we try to create a resource with unknown type. (Not registered to ROA).

•10010 - Whenever we try to create a resource which fails validation.

•10020 - Whenever we try to create a resource without passing a valid body.

•10030 - Whenever we try to create a resource and an unexpected database exception occurs.

You can find more information about typical REST ROA APIs response on REST Responses.

create_item_latest(*args, **kwargs)
This method provides create item latest API version.

delete_item(*args, **kwargs)
This method provides the route for deleting existing resources from an existing collection. The API is json
only. Usually, when a resource is deleted successfully a similar answer is returned to the client:

72 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

204 No Content
Content-Type: application/json
Content-Length: 0

Below you can find all error response codes which might be returned when creating a new resource:

•10000 - Whenever we try to delete a resource with unknown type. (Not registered to ROA).

•10030 - Whenever we try to delete a resource and an unexpected database exception occurs.

•10040 - Whenever we try to delete a resource which does not exist.

You can find more information about typical REST ROA APIs response on REST Responses.

delete_item_latest(*args, **kwargs)
This method provides the functionality for delete item latest version api route.

get_collection(*args, **kwargs)
This method provides the route for accessing a resource collection. REST API standard for collections are
enabled by this method. The typical response format is presented below:

var response = {"items": [
// resources represented as json objects.

],
"totalItems": 100}

If a resource is not found or the resource version does not exist the following response is returned:

{"error_code": 10000,
"error_description": "Resource %s version %s does not exist.",
"error_details": "http://rcosnita.github.io/fantastico/html/features/roa/errors/error_10000.html"}

get_collection_latest(*args, **kwargs)
This method retrieves a resource collection using the latest version of the api.

get_item(*args, **kwargs)
This method provides the API for retrieving a single item from a collection. The item is uniquely identified
by resource_id. Below you can find a success response example:

GET - /api/1.0/simple-resources/1 HTTP/1.1

200 OK
Content-Type: application/json
Content-Length: ...

{
"id": 1,
"name": "Test resource",
"description": "Simple description"

}

Of course there are cases when exceptions might occur. Below, you can find a list of error response
retrieved from get_item API:

•10000 - Whenever we try to retrieve a resource with unknown type. (Not registered to ROA).

•10030 - Whenever we try to retrieve a resource and an unexpected database exception occurs.

•10040 - Whenever we try to retrieve a resource which does not exist.

get_item_latest(*args, **kwargs)
This method provides the latest get_item route for ROA api.

4.6. ROA (Resource Oriented Architecture) 73

fantastico Documentation, Release 0.7.0-b141

handle_resource_options(*args, **kwargs)
This method enables support for http ajax CORS requests. This is mandatory if we want to host apis on
different domains than project host.

handle_resource_options_latest(*args, **kwargs)
This method handles OPTIONS http requests for ROA api latest versions.

update_item(*args, **kwargs)
This method provides the route for updating existing resources from an existing collection. The API is json
only and invokes the validator as described in ROA spec. Usually, when a resource is update successfully
a similar answer is returned to the client:

204 No Content
Content-Type: application/json
Content-Length: 0

Below you can find all error response codes which might be returned when creating a new resource:

•10000 - Whenever we try to update a resource with unknown type. (Not registered to ROA).

•10010 - Whenever we try to update a resource which fails validation.

•10020 - Whenever we try to update a resource without passing a valid body.

•10030 - Whenever we try to update a resource and an unexpected database exception occurs.

•10040 - Whenever we try to update a resource which does not exist.

You can find more information about typical REST ROA APIs response on REST Responses.

update_item_latest(*args, **kwargs)
This is the route handler for latest update existing item api.

validate_security_context(request, attr_scope)
This method triggers security context validation and converts unexpected exceptions to
OAuth2UnauthorizedError. If everything is fine this method return the access_token from security
context.

API error responses

10000 - Resource Collection Not Found Whenever we try a ROA dynamic REST operation (Read / Create / Update
/ Delete) on a resource and version which are not registered this error is returned. It is always a json compatible
response:

{"error_code": 10000,
"error_description": "Friendly error description.",
"error_details": <link to this page>}

10010 - Resource Invalid Whenever a resource is created / updated a validation is done using a custom validator
(ROA (Resource Oriented Architecture)). You can find below a sample example of error message you might receive:

{"error_code": 10010,
"error_description": "Friendly error description.",
"error_details": <link to this page>}

10020 - No body given Whenever we try to create / update a resource without sending resource body (information
about the resource) this response is received. Below you can see a sample error response:

74 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

{"error_code": 10020,
"error_description": "Friendly error description.",
"error_details": <link to this page>}

10030 - Unexpected database error Whenever we try to retrieve / create / update / delete resources database excep-
tions related to constraint or inconsistencies might appear. This case is treated in a friendly manner within ROA apis.
You can find a sample example below:

{"error_code": 10030,
"error_description": "Resource /sample-resource version 1.0 can not be created: DB unexpected exception.",
"error_details": <link to this page>}

10040 - Resource item not found Whenever we try to read / update resource from a collection of resources this
exception might occur if the given item does not exist. Below you can find a sample error response:

{"error_code": 10040,
"error_description": "Resource /sample-resource version 1.0 item 123 does not exist.",
"error_details": <link to this page>}

4.7 OAUTH2

In Fantastico, a very modern authorization framework (OAUTH2) was choosen for guaranteeing:

1. Easy security for REST APIs.

2. Easy integration of 3rd party applications.

3. Easy integration of various Identity Providers.

OAUTH2 specification contains many scenarios for its usage and provide various flows:

1. Authorizaton code grant.

2. Implicit grant.

3. Resource owner password credentials grant.

4. Client credentials grant.

In order to understand all this flows you can read the official OAUTH2 documentation.

4.7.1 Fantastico security

In order to keep things as simple as possible, in Fantastico we currently support only implicit grant. Moreover, you
can find some particularities of Fantastico implementation:

• We only support Implicit grant (for all use cases where protected resources are involved).

• We fully support scopes.

• We support state parameter for avoiding Cross Site Request Forgery

4.7. OAUTH2 75

http://tools.ietf.org/pdf/rfc6749.pdf

fantastico Documentation, Release 0.7.0-b141

Example (Simple Menu API)

Lets consider a virtual resource called SimpleMenu which has the following API:

HTTP Verb URL Description Required permissions
GET /api/1.0/simple-menus Retrieve all menus.
POST /api/1.0/simple-menus Create a new system menu. simple_menus.create
PUT /api/1.0/simple-menus/:id Update an existing menu. simple_menus.update
DELETE /api/1.0/simple-menus/:id Delete an existing menu. simple_menus.delete

Terminology

In OAUTH, we always talk about three concepts:

1. Resource (Image, Melody, Menu).

2. Resource Owner (an Identity Provider which can authenticatate the entities owning resources).

3. Client (an application which wants access to resources owned by Resources owner in order to provide useful
features).

In the above example, Simple Menu is a resource owned by a system (global resource). Resource owners are all
persons who are granted at least one scope required by the resource:

• Everyone has anonymous (read) access to the menus.

• Everyone granted simple_menus.create,**simple_menus.update** or simple_menus.delete can manage
(CRUD) existing menus.

It is important to understand that permissions are called scopes in OAUTH2 specification.

Display all menus

As you can see in the above example read access is pretty straightforward because the read endpoint (route) does not
require authorization (specific scopes).

76 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

Managing menus.

The above diagram assumes an application exists for managing menus. This application (extension) consist of a set
of frontend controllers which renders only markup and a set of REST APIs described above. The above diagram
assumes End user uses an user agent capable of supporting HTTP protocol. Below you can find the http calls made:

1. Unauthenticated user requests:

GET - /authorize?response_type=token&client_id=sample-menus&state=xyz&error_format=hash&redirect_uri=/simple-menus/ui/index&scopes=simple_menus.create%20simple_menus.update%20simple_menus.delete

2. Fantastico /authorize endpoint detects that user is not authenticated and redirects the user agent to login screen.

3. If authentication is successful user agent is redirected back to /authorize.

4. At this point an access token is generated and user agent is redirected back to simple menus ui index page with
an access token in hash.

5. Menus management application start page stores the access token into the application space (session storage
might be used for this). It is recommended to validate received state in order to ensure it corresponds to the
initial request state. Application must decide how to generate state and keep it consistent before request and
response.

This is it. Using the access token, end user can easily access desired functionality. Moreover, using the access token,
menus management application can easily invoke apis.

OAUTH2 Fantastico Tokens

In Fantastico framework there are currently two type of supported tokens:

• Authenticated user token.

4.7. OAUTH2 77

fantastico Documentation, Release 0.7.0-b141

An opaque value used to prove the requester (end user) is indeed authenticated. This token is set
once by the Fantastico IDP login page and lives a long time (couple of weeks). The structure of this
opaque value as seen on server side is presented below:

{"client_id": "fantastico-idp",
"type": "login",
"encrypted": {

"client_id": "fantastico-idp",
"type": "login",
"user_id": 1,
"creation_time": "1380137651",
"expiration_time": "1380163800",

}
}

• Access token

An opaque value used to allow applications to access resource owner resources (images, documents,
menus, etc). Below you can find the access token structure, as seen on server side:

{"client_id": "simple-menus",
"type": "access",
"encrypted": {
"client_id": "simple-menus",
"type": "access",
"user_id": 1,
"scopes": ["simple_menus.create", "simple_menus.update", "simple_menus.delete"],
"creation_time": "1380137651",
"expiration_time": "1380163800"

}
}

All supported tokens are symmetrical encrypted by Fantastico on server side and though become opaque for the user
agent. Currently, AES-256 is used for encryption.

OAUTH2 Fantastico Error Responses

In this section you can find possible error responses retrieved by Fantastico OAUTH2 endpoints.

/authorize

Below attributes are appended as query parameters or sent as json object to the client application in case of an excep-
tion:

• error

– 400 Bad request

* invalid_request

The request is missing a required parameter, includes an invalid parameter value, includes a
parameter more than once, or is otherwise malformed.

* unsupported_response_type

The authorization server does not support obtaining an authorization / access token code using
this method.

78 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

* invalid_scope

The requested scope is invalid, unknown, or malformed.

– 401 Unauthorized

* unauthorized_client

The client is not authorized to request an authorization code / access token using this method.

– 403 Forbidden

* access_denied

The resource owner or authorization server denied the request.

• error_description

Human-readable ASCII [USASCII] text providing additional information, used to assist the client
developer in understanding the error that occurred.

• error_uri

A URI identifying a human-readable web page with information about the error, used to provide the
client developer with additional information about the error.

OAUTH2 Fantastico App registration

In order to be able to develop secure applications on Fantastico, you must first register them in order to be able to obtain
access tokens. Before moving forward to see supported ways to register applications into a project it is important to
understand the data structure presented below:

Summarizing the diagram above, a client is described by:

• client_id

A global unique identifier for the application within a Fantastico project.

4.7. OAUTH2 79

fantastico Documentation, Release 0.7.0-b141

• name

A friendly name which accurately describes what is the purpose of this application.

• description

(Optional) A human readable text detailing the benefits of this application.

• grant_types

A comma separated list of values describing what OAuth 2 grant types this client can use in order to
obtain an access token.

• scopes

This is a list of scopes this application is authorized to use.

• token_iv

A 128 bits initialization vector specific to this client used to initialize AES algorithm.

• token_key

A (128 / 192 / 256) bits key used for AES algorithm.

• return_urls

A list of return urls which Fantastico OAauth 2 authorize is allowed to redirect user agent of end user.

App registration extension

This is a Fantastico extension used to allow new apps registration into an existing project. In order to enable this
extension in your project follow the steps below:

1. Activate the extension.

fsdk activate-extenstion --name oauth2-registration --comp-root <your components root folder>

2. Synchronize database.

fsdk syncdb --db-command /usr/bin/mysql --comp-root <your components root folder>

3. Start your development server.

4. Access http://localhost:12000/oauth/oauth2-registration/index

You can find more information about this extension on /features/components/oauth2/app_registration/index.

Manual registration

Even if it’s really easy to use the frontend for registering applications, when you will migrate your project to pro-
duction you will definitely want to automatically register the applications using a script. The easiest way is to dump
RegisteredClients table content into a create_data.sql script placed under your main component.

By doing this, next time you sync your database in production using SDK it will preregister all necessary applications.
Please make sure you do not include oauth2-registration client id. This is automatically added by the extension.

80 Chapter 4. Fantastico features

http://localhost:12000/oauth/oauth2-registration/index

fantastico Documentation, Release 0.7.0-b141

Controllers security

Regular controllers security

In general, you will want to secure your controllers (MVC How to) using OAuth2. In addition, for some controllers
(e.g UI Controllers) you will want to tell Fantastico to redirect automatically to login screen rather than returning an
401 Unauthorized error. Below you can find a very simple example of a ui controller which automatically redirects
user to login screen in order to obtain access:

@ControllerProvider()
class SecuredController(BaseController):

@RequiredScopes(scopes=["greet.verbose", "greet.read"])
@Controller(url="/secured-controller/ui/index")
def say_hello(self, request):

return "<html><body><h1>Hello world</body></html>"

The order in which decorators are chained is extremely important because RequiredScopes append an attribute to
security context while Controller triggers security context validation.

ROA OAUTH2 Security

ROA (ROA (Resource Oriented Architecture)) resource can be easily secured using OAuth2 as shown below:

@Resource(name="app-setting", url="/app-settings", version=1.0)
@RequiredScopes(create=["app_setting.create"],

read=["app_setting.read"],
update=["app_setting.update"],
delete=["app_setting.delete"]})

class AppSetting(BASEMODEL):
id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(50), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name, value):
self.name = name
self.value = value

This is an extremely convenient way to secure a resource. In addition, each argument from @Resource constructor is
optional. For instance, if read is not given any scope then everyone can read AppSetting resources.

Fantastico will autodiscover endpoints / resources which require scopes and preauthorize every call to them.

OAUTH2 Fantastico IDP

Fantastico provides a default Identity provider which provides required APIs for managing users. As other Fantastico
extensions APIs, idp APIs are secured with OAUTH2 tokens. In order to activate IDP extension for Fantastico follow
OAuth2 Identity Provider.

4.7. OAUTH2 81

fantastico Documentation, Release 0.7.0-b141

APIs

URI Verb Required scopes Description Headers
/api/latest/oauth-
idp-profile

GET user.profile.read Retrieves information about
authenticated user.

Authorization:
Bearer
<oauth2_token>

/api/latest/oauth-
idp-profile

POST Creates a new user profile.

/api/latest/oauth-
idp-profile

PUT user.profile.update Updates an existing user profile. Authorization:
Bearer
<oauth2_token>

/api/latest/oauth-
idp-profile

DELETEuser.profile.delete Updates an existing user profile. Authorization:
Bearer
<oauth2_token>

/api/oauth/profile/me GET user.profile.read,
user.profile.read.person

Retrieves information about
authenticated user (based on the access
token).

Authorization:
Bearer
<oauth2_token>

/api/latest/oauth-
idp-
person/:person_id

PUT user.profile.update Updates existing person details . Authorization:
Bearer
<oauth2_token>

/oauth/idp/ui/login?redirect_uri=/test-
url

GET Returns the markup for login screen.

/oauth/idp/login?redirect_uri=/test-
url

POST Authenticate the user, generates a token
and passes it to redirect uri.

/oauth/idp/ui/cb GET A very simple callback which extracts
the access token received and prints it
on screen.

82 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

User profile data

Login frontend

Developers can easily customize the login screen by providing a template which must be applied to login screen. A
typical custom login template is presented below:

{% extends "login.html" %}

{% block head %}
<title>Fantastico IDP default login</title>

<!-- Latest compiled and minified CSS -->
<link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.3/css/bootstrap.min.css">
<link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.3/css/bootstrap-theme.min.css">

<script src="//code.jquery.com/jquery-2.0.3.min.js"></script>
<script src="//netdna.bootstrapcdn.com/bootstrap/3.0.3/js/bootstrap.min.js"></script>

{% endblock %}

{% block body_header %}
<div class="row" align="center">

<div class="col-md-4">
<div class="panel panel-default">

<div class="panel-heading">
{% block panel_header %}
<h1>Login to fantastico</h1>
{% endblock %}

</div>
{% endblock %}

4.7. OAUTH2 83

fantastico Documentation, Release 0.7.0-b141

{% block body_footer %}
<div class="panel-footer">

<h4>Created by Radu Viorel Cosnita</h4>
</div>

</div>
</div>

</div>
{% endblock %}

You can find documentation on how to configure custom login template on Fantastico settings.

Administrator account When you first activate the extension and you syncdb an administrator account is created:

username = "admin@fantastico.com"
password = "1234567890"

This account can be used to access various applications provided by various Fantastico extensions.

Users and persons At the current moment a person can only have one user associated. Person details must be
retrieved using oauth-idp-profile complex representation (see: ROA (Resource Oriented Architecture)). Moreover,
when a new user is created a new person is created automatically and assigned to that user. Initially created person has
some default values in order to allow very smooth account creation in various applications.

Default oauth callback

By default, the oauth idp also provides a callback page which displays received hash parameters. In order to allow
reusage of this callback in mobile apps this callback page sends fantastico.oauth.cb.message message to it’s parent
frame with the following body:

{
"messageType": "fantastico.oauth.cb.message",
"url": "<current url include hash fragment>",
"access_token": "<currently received access token>",
"expires_in": "<the number of minutes in which access token will expire>"

}

In case of an error the same message is sent with error attributes received in hash fragment.

Technical summary

Password storage It is recommend that each identity provider holds hashes of passwords instead of plain text pass-
words. Foreasily development of new Identity Providers, Fantastico provides a contract for easily hashing passwords.

class fantastico.oauth2.passwords_hasher.PasswordsHasher
This class provides an abstract contract for password hasher. A password hasher is an algorithm that generates
a strong hash starting from a plain text string.

hash_password(plain_passwd, hash_ctx=None)
This method must be overriden in order to provide concrete hashing algorithm.

Parameters

• plain_passwd (str) – The plain password for which we want to obtain a strong hash.

84 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

• hash_ctx (fantastico.utils.dictionary_object.DictionaryObject)
– An optional hashing context which contains additional attributes required by hashing
algorithm. E.g: sha512 with salt.

Returns The strong hash generated.

Return type str

class fantastico.oauth2.sha512salt_passwords_hasher.Sha512SaltPasswordsHasher
This class provides the sha512salt implementation for password hashing. In addition, the result is encoded using
base64. In order to use this hasher try the code snippet below:

sha512_hasher = PasswordsHasherFactory().get_hasher(PasswordsHasherFactory.SHA512_SALT)
hashed_passwd = sha512_hasher.hash_password("abcd", DictionaryObject({"salt": 123}))

hash_password(plain_passwd, hash_ctx=None)
This method provides the sha512 with salt algorithm for a given plain password. In addition, the hash is
base64 encoded.

class fantastico.oauth2.passwords_hasher_factory.PasswordsHasherFactory
This class provides a factory used to obtain concrete password hasher providers. At the moment, the following
hashers are supported:

•SHA512_SALT

get_hasher(hash_alg)
This method obtains a concrete passwords hasher provider based on the requested hash algorithm. See the
constants defined in this factory in order to find out supported algorithms.

Parameters hash_alg (str) – A string uniquely identifying desired hash algorithm.

Returns A concrete passwords hasher provider.

Return type fantastico.oauth2.passwords_hasher.PasswordsHasher

Raises fantastico.oauth2.exceptions.OAuth2TokenEncryptionError In case the requested al-
gorithm is not supported.

OAUTH2 Technical Summary

In this document you can find out information about OAUTH2 implementation in Fantastico framework. It is important
to have read the previous sections before actually deep diving into technical details.

Overview

class fantastico.oauth2.oauth2_controller.OAuth2Controller(settings_facade, han-
dler_factory_cls=<class
‘fantas-
tico.oauth2.grant_handler_factory.GrantHandlerFactory’>)

This class provides the routes specified in OAUTH 2 specification (RFC6479). A technical overview of OAuth2
implementation in Fantastico is presented below:

4.7. OAUTH2 85

http://tools.ietf.org/html/rfc6749

fantastico Documentation, Release 0.7.0-b141

handle_authorize(*args, **kwargs)
This method provides the /authorize endpoint compliant with RFC6479 standard. Authorize endpoint
provides an API for obtaining an access token or an authorization code depending on the grant type.

handle_token(request)
This method provides the /token endpoint compliant with RFC6479. Token endpoint provides an API for
obtaining access tokens.

class fantastico.oauth2.middleware.tokens_middleware.OAuth2TokensMiddleware(app,
to-
kens_service_cls=<class
‘fan-
tas-
tico.oauth2.tokens_service.TokensService’>)

This class provides a middleware responsible for decoding an access token (if exists) and
building a security context. It is extremely import to configure this middleware to run af-
ter fantastico.middleware.request_middleware.RequestMiddleware and after
fantastico.middleware.model_session_middleware.ModelSessionMiddleware be-
cause it needs a valid request and connection manager saved in the current pipeline execution.

class fantastico.oauth2.middleware.exceptions_middleware.OAuth2ExceptionsMiddleware(app,
set-
tings_facade_cls=<class
‘fan-
tas-
tico.settings.SettingsFacade’>,
ex-
cep-
tions_factory_cls=<class
‘fan-
tas-
tico.exception_formatters.ExceptionFormattersFactory’>)

This class provides the support for dynamically casting OAuth2 errors into concrete error responses. At the
moment responses are returned only in english and have the format specified in RFC6749. Mainly, at each
intercepted OAuth2 exceptions a json response is returned to the client.

86 Chapter 4. Fantastico features

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

fantastico Documentation, Release 0.7.0-b141

class fantastico.oauth2.security_context.SecurityContext(access_token, re-
quired_scopes=None)

This class provides the OAuth2 security context. Security context is available for each request and can be
accessed using the following code snippet:

@Controller(url="/test/controller")
def handle_request(self, request):

security_ctx = request.context.security

do something with security context

access_token
This property returns the current access token passed to the current http request. Access token is already
decoded as documented in OAUTH2 Fantastico Tokens (encrypted section).

required_scopes
This property returns the current required scopes for http request. Required scopes are only available at
runtime.

validate_context(attr_scope=’scopes’)
This method tries to validate the current security context using the current access token and required
scopes. Internally, the method simply ensures required scopes are present in access token granted scopes.
Moreover, it receives an optional parameter which allows requester to decide what section of required
scopes it wants to validates. Valid values are: scopes, create_scopes, read_scopes, update_scopes or
delete_scopes.

Enforcing authorization

class fantastico.oauth2.oauth2_decorators.RequiredScopes(scopes=None, create=None,
read=None, update=None,
delete=None)

This class provides the decorator for enforcing fantastico to authorize requests against ROA resources and MVC
controllers.

enforce authorization for MVC controllers.
@ControllerProvider()
class SecuredController(BaseController):

@Controller(url="/secured-controller/ui/index")
@RequiredScopes(scopes=["greet.verbose", "greet.read"])
def say_hello(self, request):

return "<html><body><h1>Hello world</body></html>"

enforce authorization for ROA resources.
@Resource(name="app-setting", url="/app-settings", version=1.0)
@RequiredScopes(create="app_setting.create",

read="app_setting.read",
update="app_setting.update",
delete="app_setting.delete"})

class AppSetting(BASEMODEL):
id = Column("id", Integer, primary_key=True, autoincrement=True)
name = Column("name", String(50), unique=True, nullable=False)
value = Column("value", Text, nullable=False)

def __init__(self, name, value):
self.name = name
self.value = value

4.7. OAUTH2 87

fantastico Documentation, Release 0.7.0-b141

create_scopes
This property returns the scopes required for create calls.

delete_scopes
This property returns the scopes required for delete calls.

inject_scopes_in_security(request)
This method injects the request scopes into request security context.

read_scopes
This property returns the scopes required for read calls.

scopes
This property returns the currently set scopes (including create, read, update, delete).

update_scopes
This property returns the scopes required for update calls.

Common tokens usage

Obtain authenticated user id It is common in web applications to want to obtain the current authenticated user
unique identifier so that additional information can be obtained in a secure context.

@Controller(url="^/users/ui/show-profile$")
def show_profile(self, request):

security_ctx = request.context.security
user_id = security_ctx.access_token.user_id

use profile endpoint to obtain additional information.

Obtain current granted scopes It is common to want to access currently granted scopes for a given request. In
order to do this use the following code snippet:

@Controller(url="^/sample-controller$")
@RequiredScopes(scopes=["custom_scope1.read"])
def handle_request(self, request):

access_token = request.context.security.access_token
scopes = access_token.scopes

validate scopes

If you try to use access token property of security context when no access token is expected this will be None.

Supported token generators

class fantastico.oauth2.token.Token(desc, immutable=True)
This class provides a token model which can be built from a generic dictionary. All dictionary keys become
token members.

class fantastico.oauth2.tokens_service.TokensService(db_conn, fac-
tory_cls=<class ‘fantas-
tico.oauth2.tokengenerator_factory.TokenGeneratorFactory’>,
client_repo_cls=<class ‘fantas-
tico.oauth2.models.client_repository.ClientRepository’>,
encryptor_cls=<class ‘fantas-
tico.oauth2.token_encryption.PublicTokenEncryption’>)

88 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

This class provides an abstraction for working with all supported token types. Internally it uses
fantastico.oauth2.tokengenerator_factory.TokenGeneratorFactory for obtaining a
correct token generator. Then, it delegates all calls to that token generator.

db_conn
This property returns the database connection used by this token service.

decrypt(encrypted_str)
This method decrypts a given string and returns a concrete token object.

encrypt(token, client_id)
This method encrypts a given token and returns the encrypted string representation. Client id is required
in order to obtain the encryption keys.

generate(token_desc, token_type)
This method generates a concrete token from the given token descriptor. It uses token_type in order to
choose the right token generator.

extract db_conn from one of your controller injected facade models.

generate a new access token
tokens_service = TokensService(db_conn)

token_desc = {"client_id": "sample-client",
"user_id": 123,
"scopes": "scope1 scope2 scope3",
"expires_in": 3600}

access_token = tokens_service.generate(token_desc, TokenGeneratorFactory.ACCESS_TOKEN)

invalidate(token)
This method invalidates a given token object. For instance, authorization codes can be invalidated. In order
to invalidate a token you can use the code snippet below:

extract db_conn from one of your controller injected facade models.
extract token from request or instantiate a new token.

tokens_service = TokensService(db_conn)
tokens_service.invalidate(token)

validate(token)
This method validates a given token object. Internally, a generator is selected to validate the given token
based on the given token type.

extract db_conn from one of your controller injected facade models.
extract token from request or instantiate a new token.

tokens_service = TokensService(db_conn)
tokens_service.validate(token)

class fantastico.oauth2.tokengenerator_factory.TokenGeneratorFactory
This class provides the entry point for working with generators. It provides a factory for easily instantiating a
generator which can work with a request token type.

login_generator = TokenGeneratorFactory().get_generator(TokenGeneratorFactory.LOGIN_TOKEN)

get_generator(token_type, db_conn)
This method returns an instance of a token generator which can handel requested token type.

Parameters

• token_type (string) – A unique token type.

4.7. OAUTH2 89

fantastico Documentation, Release 0.7.0-b141

• db_conn – An existing database connection (sql alchemy object) used when working with
client context.

Returns An instance of a concrete token generator which is compatible with the request token
type.

Return type fantastico.oauth2.token_generator.TokenGenerator

class fantastico.oauth2.token_generator.TokenGenerator(db_conn,
model_facade_cls=<class
‘fantas-
tico.mvc.model_facade.ModelFacade’>)

This class provides an abstract contract which must be provided by each concrete token generator. A token
generator must provide the following functionality:

•generate a new token

•validate a given token

•invalidate a given token

generate(token_desc)
This method must be overriden so that it builds a correct token from the given descriptor. Descriptor is a
free form object.

Parameters token_desc (dict) – A dictionary containing all keys required for generating a new
token.

Returns A new token object.

Return type fantastico.oauth2.token.Token

invalidate(token)
This method must be overriden if the given token supports invalidation (e.g: authorization code). In many
cases this is not necessary so this is a nop.

validate(token)
This method must be overriden so that it validates the given token. Usually, if the token is not valid a
concrete exception must be raised.

Parameters token (fantastico.oauth2.token.Token) – The token object we want to
validate.

class fantastico.oauth2.logintoken_generator.LoginTokenGenerator(db_conn,
model_facade_cls=<class
‘fantas-
tico.mvc.model_facade.ModelFacade’>)

This class provides support for generating and working with login tokens. A login token is used for proving that
a user is authenticated correctly. For more information, read OAUTH2 Fantastico Tokens.

generate(token_desc, time_provider=<module ‘time’ (built-in)>)
This method generates a login token. In order to succeed token descriptor must contain the following keys:

•client_id - a unique identifier for the idp which generated the token.

•user_id - idp user unique identifier.

•expires_in - an integer value in seconds determining the maximum validity of the token.

If any of the above keys are missing an oauth 2 exception is raised.

validate(token)
This method checks the given login token for:

•correct type (login).

90 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

•expiration time.

class fantastico.oauth2.accesstoken_generator.AccessTokenGenerator(db_conn,
model_facade_cls=<class
‘fantas-
tico.mvc.model_facade.ModelFacade’>)

This class provides the methods for working with access tokens: (generate and validate).

generate(token_desc, time_provider=<module ‘time’ (built-in)>)
This method generates a new access token starting from the givent token descriptor. In order to succeed
the token descriptor must contain the following keys:

•client_id - Client unique identifier.

•user_id - User unique identifier.

•scopes - The scopes requested for this client (a space delimited list of strings).

•expires_in - The time to live period (in seconds) for the newly generated access token.

validate(token)
This method validates a given access token. It checks for:

•valid client id

•valid token type

•token not expired

Encryption / decryption

In Fantastico OAuth2, tokens are encrypted / decrypted using AES symmetric encryption. Below you can find the
classes which provides AES implementation:

class fantastico.oauth2.token_encryption.TokenEncryption
This class provides an abstract model for token encryption providers. A token encryption provider must be able
to encrypt / decrypt a fantastico.oauth2.token.Token objects.

decrypt_token(encrypted_str, token_iv, token_key)
This method must be overriden by concrete providers in order to correctly transform an encrypted string
into a token object.

Parameters

• encrypted_str (str) – Encrypted token representation.

• token_iv (byte[]) – Token initialization vector used in symmetric encryption. Most of the
times this will have a fix 128 bits length.

• token_key (byte[]) – Token key used in symmetric encryption. Based on the implementa-
tion the length might vary: 128 / 192 / 256 bits.

Returns Decrypted token object.

Return type fantastico.oauth2.token.Token

encrypt_token(token, token_iv, token_key)
This method must be overriden by concrete providers in order to correctly transform a token object into an
encrypted string.

Parameters

• token (fantastico.oauth2.token.Token) – A token object we want to encrypt.

4.7. OAUTH2 91

fantastico Documentation, Release 0.7.0-b141

• token_iv (byte[]) – Token initialization vector used in symmetric encryption. Most of the
times this will have a fix 128 bits length.

• token_key (byte[]) – Token key used in symmetric encryption. Based on the implementa-
tion the length might vary: 128 / 192 / 256 bits.

Returns The encrypted representation of the token.

Return type str

class fantastico.oauth2.token_encryption.AesTokenEncryption
This class provides a generic AES token encryption provider. It allows developers to specify the number of bits
used for AES (128 / 192 / 256 bits).

decrypt_token(encrypted_str, token_iv, token_key)
This method uses AES for decrypting the given string. Internally, decrypted string is converted into a
dictionary and then into a concrete token object.

encrypt_token(token, token_iv, token_key)
This method uses AES for encrypting the given token. Internally it transform the token into a JSON string
and encrypt it using given token_iv and token_key.

class fantastico.oauth2.token_encryption.PublicTokenEncryption(symmetric_encryptor)
This class provides a special token encryption: a mix of base64 encoded and symmetrical encrypted token. We
need this mix because client_id is required for every operation involving oauth2 tokens.

decrypt_token(encrypted_str, token_iv=None, token_key=None, client_repo=None)
This methods receives a public token representation and returns a concrete token object. In many cases
token_iv and token_key will not be known so they will obtained from the public part of the token using
client_id descriptor persisted in database.

encrypt_token(token, token_iv=None, token_key=None, client_repo=None)
This method takes a concrete token object and returns a base64 representation of the token. In the rare
cases where the encryption vectors are not known client_repo is used to read client descriptor and lazy
obtain the vectors.

Suported grant types

class fantastico.oauth2.grant_handler.GrantHandler(tokens_service, settings_facade)
This class provides the abstract contract of a handler. Each concrete handler must implement this contract in
order to correctly extend Fantastico OAuth2 supported handlers.

handle_grant(request)
This method must be overriden in order to correctly implement grant logic. It receives the current http
request and return a http response.

class fantastico.oauth2.grant_handler_factory.GrantHandlerFactory(tokens_service_cls=<class
‘fantas-
tico.oauth2.tokens_service.TokensService’>,
set-
tings_facade_cls=<class
‘fantas-
tico.settings.SettingsFacade’>)

This class provides a factory which can be used to obtain a concrete grant handler. Below you can find a code
snippet for obtaining and implicit grant type handler:

grant_handler = GrantHandlerFactory().get_handler(GrantHandlerFactory.IMPLICIT_GRANT)

92 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

get_handler(handler_type, db_conn)
This method builds a grant handler which matches requested handler_type.

Parameters

• handler_type (str) – A string value describing the grant_type which must be handled.

• db_conn (Connection) – A db connection active session which cn be used.

Returns A concrete grant handler instance.

Return type fantastico.oauth2.grant_handler.GrantHandler

class fantastico.oauth2.implicit_grant_handler.ImplicitGrantHandler(tokens_service,
set-
tings_facade,
excep-
tion_formatters_cls=<class
‘fantas-
tico.exception_formatters.ExceptionFormattersFactory’>,
client_repo_cls=<class
‘fantas-
tico.oauth2.models.client_repository.ClientRepository’>)

This class provides the implementation for implicit grant type described in RFC6749. Implementation of this
grant type is fully compliant with OAuth2 spec. In addition to RFC6749, the implicit grant implemented in
fantastico supports an additional query parameter named redirect which is optional. If redirect query parameter
is specified with value 0 then a 200 OK response is returned to the client in comparison with redirect 1 value
where 302 Found response is returned. We do this in order to support more advanced use cases where user can
orchestrate the redirects rather than browser.

handle_grant(request)
This method provides the algorithm for implementing implicit grant type handler. Internally it will use
TokensService in order to generate a new access token. In addition, if redirect query parameter is set to
false then a 200 OK response with Location header and no body is sent to the client.

Concrete exceptions

class fantastico.oauth2.exceptions.OAuth2Error(error_code=12000, msg=None,
http_code=400)

This class provides the base class for OAuth2 exceptions. In order to be compliant with OAuth2 spec each oauth
error is described by a status code, an error code and a friendly description.

error_code
This property returns the exception error code.

class fantastico.oauth2.exceptions.OAuth2InvalidTokenDescriptorError(attr_name)
This class provides a concrete exception used to notify a missing attribute from a token descriptor.

attr_name
This property returns the missing attribute name.

class fantastico.oauth2.exceptions.OAuth2InvalidTokenTypeError(token_type, msg)
This class provides a concrete exception used to notify that a token has been sent to a token generator which
does not support it or the token type is unknown.

token_type
This property returns the invalid token type.

class fantastico.oauth2.exceptions.OAuth2TokenExpiredError(msg=None)
This class provides a concrete exception used to notify that a token is expired.

4.7. OAUTH2 93

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

fantastico Documentation, Release 0.7.0-b141

class fantastico.oauth2.exceptions.OAuth2InvalidClientError(msg)
This class provides a concrete exception used to notify an invalid client (not found or revoked).

class fantastico.oauth2.exceptions.OAuth2InvalidScopesError(msg)
This class provides a concrete exception used to notify that a client is not allowed to use a request set of scopes.

class fantastico.oauth2.exceptions.OAuth2MissingQueryParamError(param_name)
This class provides a concrete exception used to notify a missing query parameter from an OAuth2 endpoint.

param_name
This property return the name of the query parameter which is missing.

class fantastico.oauth2.exceptions.OAuth2TokenEncryptionError(msg)
This class provides a concrete exception used to notify an error during encrypt / decrypt token operations.

class fantastico.oauth2.exceptions.OAuth2UnsupportedGrantError(handler_type)
This class provides a concrete exception for notifying unsupport oauth2 grant type.

handler_type
This property holds the unsupported grant type name.

class fantastico.oauth2.exceptions.OAuth2UnauthorizedError(msg)
This class provides a concrete exception for notifying unauthorized access to oauth2 protected resources.

class fantastico.oauth2.exceptions.OAuth2AuthenticationError(msg, http_code=403)
This class provides a concrete exception used to notify a failed authentication attempt from an OAuth2 IDP.

4.7.2 OAuth2 exceptions

12000 - OAuth generic error

This error can occur when something unexpected occured into OAuth /authorize or /token apis. Most of the time you
should not get into this generic case. In order to debug this read the detailed description passed in error_description
hash / query / json attribute.

12010 - OAuth invalid token descriptor

This exception is generated by an error on server side code (not controlled by you). Most probably insufficient data
were passed to a concrete generator. In order to fix this you must report a bug on fantastico github project page.

12020 - Invalid token type error

This exception error code is usually returned when there is a bug in Fantastico server side code. Unfortunately you
will not be able to solve it from your project. The only possible action is to report a bug on Fantastico github project
page.

12030 - OAuth token expired

This is a frequent error you might encounter when using OAuth tokens for accessing APIs. You can easily recover
from this by obtaining a new access token and retry the API call with the new token.

A better solution is to cache the token TTL and with 1 minute before expiration try to renew the token transparently.
Like this you guarantee no service interruption will occur for your end users.

94 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

12040 - OAuth token encryption error

In most cases you will not end up with this OAuth error returned for your API call. This happens in one of the two
scenarios:

1. Someone tries to send a fake token which can not be interpreted by Fantastico.

2. Client keys have been wrongly rotated. In this case simply report a bug to project creator.

12050 - OAuth invalid client error

This error response usually occurs during authorization phase, when an inexistent client_id is specified. In order to fix
it, you must register the client_id before trying to issue new tokens for it.

A second scenario, which is highly improbable is that some deleted the client_id from registered clients after you have
obtained a valid authorized token.

12060 - OAuth invalid scopes

This error response usually occurs in authorization phase when a user wants a token with higher privileges than the
client is allowed to use. In this scenario, you must make sure the right scopes have been requested.

12070 - OAuth missing query parameter

This error is quite common during authorization / api calls when requester does not add all mandatory query parameters
to request. In order to fix this you must make sure all mandatory parameters are sent through the request.

12080 - OAuth unsupported grant type

This error response is usually returned during authorization phase when a client try to obtain a token using an unsup-
ported flow (e.g: client credentials). Make sure you use a Fantastico OAuth2 supported grant (e.g: implicit).

12100 - OAuth unauthorized error

This error response is usually returned when a client is not authorized (e.g does not have sufficient scopes) to do a
certain request. In order to solve this, make sure you issue the access token with the necessary scopes.

12200 - OAuth authentication error

This exception occurs during authorization phase when resource owner provides wrong credentials. In order to recover
you must try a new authorization from your application.

4.8 SDK

Starting with version 0.3.0 of Fantastico framework all dispersed shell scripts are unified under Fantastico Software
Development Kit. In addition, the sdk is complemented by autogenerated documentation.

4.8. SDK 95

fantastico Documentation, Release 0.7.0-b141

4.8.1 Intro

Fantastico sdk was developed with the following requirements in my mind:

• Allow developers to manage Fantastico projects easily (using a single uniform command line). This is similar
to many other frameworks (e.g android sdk).

• Allow easily extension of sdk through plugins (e.g: activate off the shelf components into my project).

• Create a uniform way to provide feedback to developers (prompt user for data, show help messages, support
parameters).

• Make the sdk compliant with linux way of developing command lines.

4.8.2 Usage

In this section you can find samples of how to use the sdk and how to make it available in older projects.

For versions prior to **0.3.0**
pip install fantastico -U

fsdk --help

When you invoke fantastico sdk with –help argument it will list all available commands. Similar to other linux
command lines you can obtain help hierarchical:

Show help screen for fantastico <command>
fsdk <command> --help

In order for Fantastico SDK to work correctly make sure your project is on the PYTHONPATH. If PYTHONPATH
is not set correctly you will not be able to use some sdk extensions.

4.8.3 Supported commands

Activate extension command

This Fantastico command helps developers integrate existing components into their project very easy. One use case
is to activate in your projects contrib components (e.g: Dynamic menu). It is strongly recommended to use this sdk
command because it works on every supported operating system.

class fantastico.sdk.commands.command_activate_extension.SdkCommandActivateExtension(argv,
cmd_factory)

This class provides the functionality for activating off the shelf fantastico extensions. As developer, it is ex-
tremely easy to integrate provided functionality into fantastico. For now, it supports only local extensions
provided into fantastico.contrib package. In the future, we plan to support activation of remote components into
projects.

replace <project_root_path> with your fantastico project location.
cd <project_root_path>

replace <component_root_path> with your actual folder.
fsdk activate-extension --name dynamic_menu --comp-root <component_root_path>

exec(os_lib=<module ‘os’ from ‘/mnt/jenkins_ebs/continous_integration/fantastico_doc_workspace/pip-
deps/lib/python3.2/os.py’>)

This method is executed to activate the given extension name.

96 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

get_arguments()
This method returns support arguments of activate-extension command.

get_help()
This method returns the friendly help message describing the method.

Fantastico command

SDK

Syncdb command

Syncdb command is used to keep Fantastico projects databases updated. It is extremely easy to use it and in addition
works on every operating system. In order to familiarize with components model read Component model.

class fantastico.sdk.commands.command_syncdb.SdkCommandSyncDb(args,
cmd_factory, set-
tings_facade_cls=<class
‘fantas-
tico.settings.SettingsFacade’>)

This class provides the algorithm for synchronizing Fantastico projects database scripts with the current con-
figured database connection. Below you can find the order in which scripts are executed:

1.Scan and execute all activated extensions sql/module_setup.sql scripts.

2.Scan and execute all activated extensions for sql/create_data.sql scripts.

syncdb command first required database structure for all modules and the it populates them with necessary data.
It is important to understand that rollback procedures are not currently in place and there is no way to guarantee
data integrity. All components providers are responsible for writing module_setup in such a way that in case of
error data is left in a consistent state.

For possible examples of how to structure a component read Component model

fsdk syncdb --db-command /usr/bin/mysql --comp-root samples

It is important to understand that this command will synchronize all module_setup / create_data sql scripts for
current active settings. Read more about configuring fantastico on Fantastico settings.

exec(os_lib=<module ‘os’ from ‘/mnt/jenkins_ebs/continous_integration/fantastico_doc_workspace/pip-
deps/lib/python3.2/os.py’>, call_cmd=<function call at 0x24c3380>)

This method executes module_setup.sql and create_data.sql scripts.

Raises fantastico.sdk.sdk_exceptions.FantasticoSdkCommandError When scripts execu-
tion fails unexpectedly.

get_arguments()
This method returns support arguments for syncdb:

1.-d –db-command path to mysql command.

2.-p –comp-root component root folder.

get_help()
This method returns the friendly help message describing the method.

4.8. SDK 97

fantastico Documentation, Release 0.7.0-b141

Version command

This command tells you what is the current installed version of Fantastico SDK.

class fantastico.sdk.commands.command_version.SdkCommandVersion(argv,
cmd_factory, ver-
sion_reader=<module
‘fantastico’ from
‘/mnt/jenkins_ebs/continous_integration/fantastico_doc_workspace/fantastico/__init__.py’>)

This class provides the command for finding out installed version of Fantastico SDK. The value is defined in
fantastico root module code.

display help information for version command in sdk context
fsdk version --help

display the current sdk version
fsdk version

exec(print_fn=<built-in function print>)
This method prints the current fantastico framework version.

get_help()
This method returns the friendly help message describing the method.

4.8.4 Technical summary

class fantastico.sdk.fantastico.SdkCore(argv, cmd_factory=<class ‘fantas-
tico.sdk.sdk_core.SdkCommandsRegistry’>, sup-
ported_prefixes=None, settings_facade_cls=<class
‘fantastico.settings.SettingsFacade’>)

This class provides the core functionality of Fantastico Software Development Kit. It wires all available com-
mands together and handles requests accordingly. To better understand how sdk is designed see the following
class diagram:

As you can see in above diagram, sdk core is just the main entry point of Fantastico Software Development Kit.

98 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

It wires all available sdk commands together and it adds support for uniformly executes them and pass them
arguments..

exec()
This method does nothing because fantastico is designed to accept only registered subcommands.

get_arguments()
This property retrieves support fantastico arguments.

get_help()
This method returns the friendly help message describing the method.

class fantastico.sdk.sdk_core.SdkCommandsRegistry
This class holds all registered commands available to use in the sdk. It is important to understand that commands
and subcommands are registered by name and must be unique. This is because, by design, each command can
easily become a subcommand for another command. It facilitates very flexible extension of sdk and reusage of
existing commands.

static add_command(cmd_name, cmd_cls)
This method registers a new command using the given name.

Parameters

• cmd_name (str) – Command name used to uniquely identify the command.

• cmd_class (fantastico.sdk.sdk_core.SdkCommand) – A subclass of sdk com-
mand.

Raises fantastico.sdk.sdk_exceptions.FantasticoSdkError If the given name is not unique or
cmd class is wrong.

static get_command(cmd_name, cmd_args)
This method retrieve a concrete sdk command by name with the give args passed.

Parameters

• cmd_name (str) – The registered command name we want to instantiate.

• cmd_args (list) – a list of arguments received from command line.

Returns Command instance.

Return type fantastico.sdk.sdk_core.SdkCommand

Raises fantastico.sdk.sdk_exceptions.FantasticoSdkCommandNotFoundError if command
is not registered.

class fantastico.sdk.sdk_core.SdkCommandArgument(arg_short_name, arg_name, arg_type,
arg_help)

This class describe the attributes supported by a command argument. For a simple example of how arguments
are used read fantastico.sdk.sdk_core.SdkCommand

help
This read only property holds the argument help message.

name
This read only property holds the argument name. Name property will represent the long name argument
available for sdk commands. E.g: –name.

short_name
This read only property holds the argument short name. Short name property will represent the short name
argument available for sdk commands. E.g: -n.

type
This read only property holds the argument type.

4.8. SDK 99

fantastico Documentation, Release 0.7.0-b141

class fantastico.sdk.sdk_core.SdkCommand(argv, cmd_factory)
This class provides the contract which must be provided by each concrete command. A command of sdk is just
and extension which can provide custom actions being executed by Fantastico in a uniform manner.

Below you can find a simple example of how to implement a concrete command:

In the previous example, we have shown that all received arguments from command line are magically provided
into self._arguments attribute of the command.

When a sdk command is instantiated with a list of command line arguments the first element from the list must
be the command name. This happens because all arguments passed after a command name belongs only to that
command.

exec()
This method must be overriden by each concrete command and must provide the command execution
logic.

Raises fantastico.sdk.sdk_exceptions.FantasticoSdkCommandError if an exception occurs
while executing the command.

exec_command(*args, **kwargs)
This method provides a template for executing the current command if subcommands are present. Inter-
nally it invokes overriden exec method.

Raises

• fantastico.sdk.sdk_exceptions.FantasticoSdkCommandError – if an exception occurs
while executing the command.

• fantastico.sdk.sdk_exceptions.FantasticoSdkCommandNotFoundError – if a sub-
command does not exist.

get_arguments()
This method must be overriden by each concrete command and must return the command supported argu-
ments.

class fantastico.sdk.sdk_decorators.SdkCommand(name, help, target=None, set-
tings_facade_cls=<class ‘fantas-
tico.settings.SettingsFacade’>)

This decorator describe the sdk commands metadata:

1.name

2.target (which is the main purpose of the command. E.g: fantastico - this mean command is designed to
work as a subcommand for fantastico cmd).

3.help (which describes what this method does). It will automatically contain a link to official fantastico
documentation of the command.

It is used in conjunction with fantastico.sdk.sdk_core.SdkCommand. Each sdk command decorated
with this decorator automatically receives get_name and get_target methods.

class fantastico.sdk.sdk_exceptions.FantasticoSdkError(msg=None, http_code=400)
This is the base exception used to describe unexpected situations occuring into fantastico sdk. Below you can
see the sdk hierarchy of concrete exceptions.

100 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

class fantastico.sdk.sdk_exceptions.FantasticoSdkCommandError(msg=None,
http_code=400)

This class describe an exception which occured into one of fantastico sdk commands.

class fantastico.sdk.sdk_exceptions.FantasticoSdkCommandNotFoundError(msg=None,
http_code=400)

This class describe an exception which occurs when we try to execute an inexistent command.

4.9 Component model

In Fantastico there is no enforced component model for your code but there are a set of recommendations that will
make your life a lot easier when organizing projects. A typical component structure looks like:

• <your project folder>

– component_1

* models (sql alchemy models)

* static (static files holder)

* views (all views used by this component controllers’)

* sql (sql scripts required to setup the component)

* __init__.py

* *.py (controller module files)

You can usually structure your code as you want, but Fantastico default Model View Controller registrators are assum-
ing component name is the parent folder of the controller module. This is why is best to follow the above mentioned
structure. None of the above folders are mandatory which gives you, developer, plenty of flexibility but also responsi-
bility. For more information about models, views and controllers read MVC How to section.

4.9.1 Static folder

By default, static folder holds all static assets belonging to a component. You can find more information about this in
Static assets section.

4.9. Component model 101

fantastico Documentation, Release 0.7.0-b141

4.9.2 Sql folder

Sql folder is used to hold all sql scripts required for a component to work correctly. In our continuous delivery process
we scan all available sql folders and execute module_setup.sql scripts. By default, we want to give developers the
chance to provide a setup script for each component in order to easily install the component database dependencies.

For easily synchronization of sql scripts with a Fantastico project database read Syncdb command

Sql folder example

Assume you want to create a blog module that requires a storage for Authors and Posts. module_setup.sql script is
the perfect place to provide the code. We recommend to make this code idempotent, meaning that once dependencies
are created they should not be altered anymore by this script.

An example of such a script we use in integration tests can be found under: /<fantas-
tico_framework>/samples/mvc/sql/module_setup.sql.

###
Copyright 2013 Cosnita Radu Viorel
#
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
###

DROP TABLE IF EXISTS mvc_friendly_messages;
CREATE TABLE mvc_friendly_messages(

Id INT AUTO_INCREMENT,
Message TEXT,
PRIMARY KEY(id));

Once the component is activated (Activate extension command) and structure is synchronize data must be created into
the new tables. You can find such a script example below. It is up to you where you place sql/create_data.sql.

##
Copyright 2013 Cosnita Radu Viorel
#
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

102 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
##

DELETE FROM mvc_friendly_messages;
INSERT INTO mvc_friendly_messages(Message)
VALUES (’Hello world!!!!’),

(’Greetings from Australia!!!!’);

Both scripts are autodected and run by sdk Syncdb command.

4.10 Component reusage

class fantastico.rendering.component.Component(environment,
url_invoker_cls=<class ‘fantas-
tico.rendering.url_invoker.FantasticoUrlInternalInvoker’>)

In fantastico, components are defined as a collection of classes and scripts grouped together as described in
Component model. Each fantastico component provides one or more public routes that can be accessed from a
browser or from other components. This class provides the mechanism for internal component referencing.

In order to gain a better understanding about internal / in process component referencing we assume Blog
component provides the following public routes:

•/blog/articles/<article_id> - Retrieves information about an article.

•/blog/ui/articles/<article_id> - Displays an article within a html container.

The first url is a simple json endpoint while the second url is a simple html dynamic page. When we want to
reuse a datasource or an dynamic html page in fantastico is extremely easy to achieve. Lets first see possible
responses from the above mentioned endpoints:

/* /blog/articles/<article_id> response */
{"id": 1,
"title": "Simple blog article",
"content": "This is a simple and easy to read blog article."}

<!-- /blog/ui/articles/<article_id> response-->

<div class="blog-article">
<p class="title">Simple blog article</p>

<p class="content">This is a simple and easy to read blog article.</p>
</div>

A very common scenario is to create multiple views for a given endpoint.

<!-- web service server side reusage -->
{% component url="/blog/articles/1", template="/show_blog_formatted.html", runtime="server" %}{% endcomponent %}

<!-- show_blog_formatted.html -->
<p class="blog-title">{{model.title}}</p>
<p class="blog-content">{{model.content}}</p>

As you can see, json response is plugged into a given template name. It is mandatory that the given template
exists on the component root path.

Also a very common scenario is to include an endpoint that renders partial html into a page:

4.10. Component reusage 103

fantastico Documentation, Release 0.7.0-b141

<!-- html server side reusage -->
{% component url="/blog/ui/articles/1",runtime="server" %}{% endcomponent %}

Runtime attribute is used for telling Fantastico if the rendering needs to take place on server side or on client.
Currently, only server side rendering is supported which actually means a page will be completed rendered on
server and then the markup is sent to the browser.

In order to reduce required attributes for component tag, runtime attribute is optional with server as default
value.

parse(parser)
This method is used to parse the component extension from template, identify named parameters and
render it.

Parameters parser (Jinja 2 parser.) – The Jinja 2 expression parser.

Returns A callblock able to render the component.

Raises FantasticoInsufficientArgumentsError when no / not enough arguments are provided
to component.

render(template=’/raw_dump.html’, url=None, runtime=’server’, caller=<function <lambda> at
0x38ff380>)

This method is used to render the specified url using the given parameters.

Parameters

• template (string) – The template we want to render into the result of the url.

• url (string) – The url we want to invoke.

• runtime (string) – The runtime we execute the rendering into. Only server is supported
for now.

• caller (macro) – The caller macro that can retrieve the body of the tag when invoked.

Returns The rendered component result.

Raises

• fantastico.exceptions.FantasticoTemplateNotFoundError – Whenever we try to render
a template which does not exist.

• fantastico.exceptions.FantasticoUrlInvokerError – Whenever an exception occurs in-
voking a url within the container.

4.11 Built in components

Fantastico framework is really young and continuously improving. As of version 0.2.0 it is extremely easy to reuse
components provided urls in other context. This feature opens the possibility to provide common day by day used
components in new projects in order to accelerate development. In this document you can find a detailed list of built
in components as well as sample of how to use them:

4.11.1 Dynamic menu

Menus are a core part of every web site / application as well as mobile applications. More over, again and again
developers will want a quick way to define menu items without actually redefining menu data structure again and
again. This component which we generic named dynamic menu simply provides the controller and the model for easy
development of menus.

104 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

Integration

In order to use dynamic menu component within your project follow the steps below:

Component files activation deprecated

1. Create a symbolic link under your root components folder to dynamic_menu.

mkdir <components root>/dynamic_menu
cd <components root>/dynamic_menu
ln -s ../../pip-deps/lib/python[version]/site-packages/fantastico/contrib/dynamic_menu/sql .
ln -s ../../pip-deps/lib/python[version]/site-packages/fantastico/contrib/dynamic_menu/tests .
ln -s ../../pip-deps/lib/python[version]/site-packages/fantastico/contrib/dynamic_menu/*.py .

Component files activation (SDK)

fsdk activate-extension --name dynamic_menu --comp-root <comp root>

Component sample + db data

1. Create a template in one of your components in which you define the menu view:

<!-- *sample_menu.html* - simple snippet for creating a left / right side dockable menu. -->
{% for menu_item in model["items"] %}

{{menu_item.label}}

{% endfor %}

2. In all views where you want to reuse the component you can paste the following snippet:

{% component template="sample_menu.html", url="/dynamic-menu/menus/1/items/" %}{% endcomponent %}

3. Make sure you run dynamic_menu/sql/module_setup.sql against your configured database.

4. This script will create menus and menu_items tables into your database. Below you can find a sample script
for creating a menu:

INSERT INTO menus(name) VALUES(’My First Menu’);
INSERT INTO menu_items(target, url, title, label)
VALUES (’_blank’, ’/homepage’, ’Simple and friendly description’, ’Home’, <menu_id from previous step>),

(’_blank’, ’/page2’, ’Simple and friendly description’, ’Page 2’, <menu_id from previous step>),
(’_blank’, ’/page3’, ’Simple and friendly description’, ’Page 3’, <menu_id from previous step>);

By default, when this component is first setup into an application, the sample menu mentioned above
is created in database. You can test to see that dynamic menu works by accessing dev server url:
http://localhost:12000/dynamic-menu/menus/1/items/.

Current limitations

Because Fantastico framework is developed using an Agile mindset, only the minimum valuable scope was delivered
for Dynamic Menu component. This mean is not currently possible to:

• Localize your menu items.

• Display the menu items in the request language dynamically.

4.11. Built in components 105

http://localhost:12000/dynamic-menu/menus/1/items/

fantastico Documentation, Release 0.7.0-b141

• Only first 100 menu items can be currently retrieved.

Technical summary

class fantastico.contrib.dynamic_menu.menu_controller.DynamicMenuController(settings_facade)
This class provides the controller for dynamic menus. The following routes are automatically made available
when dynamic menu component is deployed:

/dynamic-menu/menus/<menu_id>/items/ – This route loads menu items from database and re-
trieve them in json format.

Below you can see a diagram describing relation model of the menu:

max_items
This property retrieves the maximum number of items allowed for a menu.

retrieve_menu_items(*args, **kwargs)
This method is used to retrieve all items associated with a specified menu.

Parameters

• request (HTTP request) – Http request being processed.

• menu_id (int) – Menu unique identifier we want to retrieve information for.

Returns A JSON array containing all available menu items.

Raises fantastico.contrib.dynamic_menu.menu_exceptions.FantasticoMenuNotFoundException
Whenever the requested menu does not exist.

class fantastico.contrib.dynamic_menu.menu_exceptions.FantasticoMenuNotFoundException(msg=None,
http_code=400)

This class defines a concrete fantastico menu not found exception raised whenever someone tries to access an
inexistent menu attributes.

4.11.2 Dynamic pages

Most of the time, when a developer create a new web site or web application he follows the steps:

1. Create a set of templates (can be delegated to a web designer)

2. Create a new API or create a proxy API.

3. Create pages over the templates.

Many web sites / applications have a minimal set of master templates and all web pages follow those templates. This
kind of approach keeps site consistency and decouple layouts from actual content. In Fantastico, it is extremely easy
to work in this manner thanks to Dynamic pages extension.

Dynamic pages divides pages into two main parts:

1. Page meta information (title, keywords, description, language)

2. Page model / content (markup, text keys or any other kind of information).

106 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

Using dynamic pages you can easily add new web pages to your project without writing a single line of server side
code.

Integration

1. Activate Dynamic pages extension.

fsdk activate-extension --name dynamic_pages --comp-root <comp_root>

2. Add new dynamic pages to your project using <comp_root>/sql/create_data.sql.

INSERT INTO pages(id, name, url, template, keywords, description, title, language)
VALUES(1, ’/en/home’, ’/en/home’, ’/frontend/views/master.html’, ’keyword 1, ...’, ’Home page’, ’description’, ’en-US’);

INSERT INTO page_models(page_id, name, value)
VALUES(1, ’article_left’, ’<p class="hello_world">Hello world.</p>’);

INSERT INTO page_models(page_id, name, value)
VALUES(1, ’article_right’, ’<p class="hello_world_right">Hello world right.</p>’);

3. Update your project database

fsdk syncdb --db-command /usr/bin/mysql --comp-root <comp_root>

4. Create master.html template file under <comp_root>/frontend/views/.

<!DOCTYPE html>

<html lang="{{page.language}}">
<head>

<meta http-equiv="Content-type" content="text/html;charset=UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="keywords" content="{{page.keywords}}" />
<meta name="description" content="{{page.description}}" />

<title>{{page.title}}</title>
</head>

<body>
<h1>{{page.article_left.value}}</h1>

<h2>{{page.article_right.value}}</h2>
</body>

</html>

After you integrated dynamic pages extension into your project you can access
http://localhost:12000/dynamic/test/default/page from a browser. You should see a very simple dynamic page
rendered.

Current limitations

In the first version of this component (part of Fantastico 0.4) there are some known limitations:

• Create / Delete / Update / Bulk listing API are not provided. You can do this through create_data.sql script.

• There is no way to rewrite dynamic pages url so that they do not contain /dynamic prefix.

4.11. Built in components 107

http://localhost:12000/dynamic/test/default/page

fantastico Documentation, Release 0.7.0-b141

Technical summary

class fantastico.contrib.dynamic_pages.pages_router.PagesRouter(settings_facade)
This class provides the API for managing dynamic pages. In addition, it creates the
special route /dynamic/<page_url> used to access pages stored in the database. From
dynamic pages module perspective, a web page is nothing more than a relation be-
tween fantastico.contrib.dynamic_pages.models.pages.DynamicPage and
fantastico.contrib.dynamic_pages.models.pages.DynamicPageModel.

A typical template for dynamic pages might look like:

<!DOCTYPE html>

<html lang="{{page.language}}">
<head>

<meta http-equiv="Content-type" content="text/html;charset=UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="keywords" content="{{page.keywords}}" />
<meta name="description" content="{{page.description}}" />

<link href="/frontend/static/css/bootstrap-responsive.css" rel="stylesheet">
<link href="/frontend/static/css/forhidraulic.css" rel="stylesheet">
<title>{{page.title}}</title>

</head>

<body>
<h1>{{page.article_left.value}}</h1>

<h2>{{page.article_right.value}}</h1>
</body>

</html>

serve_dynamic_page(*args, **kwargs)
This method is used to route all /dynamic/... requests to database pages. It renders the configured template
into database binded to fantastico.contrib.models.pages.DynamicPageModel values.

class fantastico.contrib.dynamic_pages.models.pages.DynamicPage(name=None,
url=None, tem-
plate=None, key-
words=None, de-
scription=None,
title=None, lan-
guage=’en’)

This model holds meta information about dynamic pages. Below you can find all meta information for a dynamic
page:

1.id (unique identifier for a dynamic page)

108 Chapter 4. Fantastico features

fantastico Documentation, Release 0.7.0-b141

2.name

3.url

4.template

5.keywords

6.description

7.language

In a template used for rendering dynamic pages, you can easily access page meta information:

<p>Id: {{page.id}}</p>
<p>Name: {{page.name}}</p>
<p>Url: {{page.url}}</p>
<p>Template: {{page.template}}</p>
<p>Keywords: {{page.keywords}}</p>
<p>Description: {{page.description}}</p>
<p>Language: {{page.language}}</p>

Usually it does not make sense to display dynamic page unique identifier but you can do it if necessary.

class fantastico.contrib.dynamic_pages.models.pages.DynamicPageModel(page_id=None,
name=None,
value=None)

This class defines how page models looks like. A page model defines the actual content for en existing page.

4.11.3 Tracking codes

Every web application usually requires support for tracking visitors behavior. Most of the solutions can be easily
integrated into a website by adding a small javascript snippet into every page you want to track. Below you can find
some popular tracking solutions (free or commercial).

Analytic solutions

At the moment of writting this article, there are plenty of options available for web developers to track their website
performance:

1. Google analytics (probably the most popular solution).

2. Reinvigorate.

3. KISSmetrics.

4. FoxMetrics.

5. Mint.

6. Open Web Analytics.

7. Clicky.

8. Mixpanel.

9. Chartbeat.

10. Adobe Web Analytics.

11. Chartbeat.

12. Inspectlet.

4.11. Built in components 109

https://www.google.com/analytics/
https://www.reinvigorate.net/
https://www.kissmetrics.com/
http://foxmetrics.com/
http://haveamint.com/
http://www.openwebanalytics.com/
http://clicky.com/
https://mixpanel.com/
https://chartbeat.com/
http://www.adobe.com/solutions/digital-analytics.html
https://chartbeat.com/
http://www.inspectlet.com/

fantastico Documentation, Release 0.7.0-b141

Of course there are many other solutions available out there. For more information about the above mentioned solution
I recommend you read the excellent article posted by Aidan Huang.

Integration

Follow the steps from this section in order to enable tracking in Fantastico projects:

1. Activate tracking extension:

fsdk activate-extension --name tracking_codes --comp-root <comp_root>

2. Add your tracking codes into database (easiest way is through Syncdb command)

3. Create a sql script similar to the one below and place it under <comp_root>/sql/create_data.sql:

INSERT INTO tracking_codes(provider, script)
VALUES (’Google Analytics’, ’

<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(["_setAccount", "UA-XXXXX-X"]);
_gaq.push(["_trackPageview"]);

(function() {
var ga = document.createElement("script"); ga.type = "text/javascript"; ga.async = true;
ga.src = ("https:" == document.location.protocol ? "https://ssl" : "http://www") + ".google-analytics.com/ga.js";
var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(ga, s);

})();
</script>’);

4. Update your project database

fsdk syncdb --db-command /usr/bin/mysql --comp-root <comp_root>

5. Use tracking codes in your pages:

{% component url="/tracking-codes/ui/codes/" %}{% endcomponent %}

Tracking component is rendering all available codes from the database. In order to check all available tracking codes
configured in a Fantastico project visit http://localhost:12000/tracking-codes/ui/codes/. Once the page is loaded see
page source.

Current limitations

In the first version of this component (part of Fantastico 0.4) there are some known limitations:

• No API provided for Create / Update / Delete operations.

Technical summary

class fantastico.contrib.tracking_codes.tracking_controller.TrackingController(settings_facade)

110 Chapter 4. Fantastico features

http://www.onextrapixel.com/2013/07/16/ten-best-alternatives-to-google-analytics/
http://localhost:12000/tracking-codes/ui/codes/

fantastico Documentation, Release 0.7.0-b141

This class provides the tracking operations supported by TrackingCodes component.

list_codes(*args, **kwargs)
This method provides tracking codes listing logic. It list all available tracking codes from database.

Parameters request (webob.request.Request) – The current http request being pro-
cessed. Read Request lifecycle for more information.

Returns JSON list of available tracking codes. Can be empty if no tracking codes are defined.

list_codes_ui(*args, **kwargs)
This method renders all available tracking codes.

class fantastico.contrib.tracking_codes.models.codes.TrackingCode(provider,
script)

This class provides the model for tracking codes. It maps tracking_codes table to an object. In order to use this
model please read Model View Controller.

4.11.4 ROA Auto discovery

REST relies on hypermedia and links in order to decouple clients from physical location of resources. In Fantastico,
we allow clients to introspect the platform in order to know which are the registered resources. Following some simple
steps you can enable autodiscovery of resources.

Integration

1. Activate ROA Discovery extension.

fsdk activate-extension --name roa_discovery --comp-root <comp_root>

2. Start your project

3. Access http://localhost/roa/resources

By default, ROA Discovery extension defines a sample resource (Sample Resource) which must be always present
in your discovery registry.

Current limitations

• ROA discovery supports only application/json content type for responses.

Technical summary

class fantastico.contrib.roa_discovery.discovery_controller.RoaDiscoveryController(settings_facade,
reg-
istry_cls=None)

This class provides the routes for introspecting Fantastico registered resources through ROA. It is extremely
useful to surf using your browser and to not be required to hardcode links in your code. Typically, you will want
to code your client side applications against resources name and you are going to use this controller to find the
location of those records.

By default, all ROA resources are mapped on /api/ relative to current project root. You can easily change
this behavior by modifying the settings of your application (fantastico.settings.BasicSettings -
property roa_api_url)

handle_list_resources_options(*args, **kwargs)
This method handles all OPTIONS cors requests coming for resources registry listing.

4.11. Built in components 111

http://localhost/roa/resources

fantastico Documentation, Release 0.7.0-b141

list_registered_resources(*args, **kwargs)
This method list all registered resources as well as a link to their entry point.

// ROA api is mapped on a subdomain: roa.fantasticoproject.com
// listing is done by GET http://fantasticoproject.com/roa/resources HTTP/1.1

{
"Person": {1.0 : "http://roa.fantasticoproject.com/1.0/persons",

"latest": "http://roa.fantasticoproject.com/latest/persons"},
"Address": {1.0 : "http://roa.fantasticoproject.com/1.0/addresses",

2.0 : "http://roa.fantasticoproject.com/2.0/addresses",
"latest": "http://roa.fantasticoproject.com/latest/addresses"}

}

// ROA api is mapped on a relative path of the project: http://fantasticoproject.com/api/
// listing is done by GET http://fantasticoproject.com/roa/resources HTTP/1.1

{
"Person": {1.0 : "http://fantasticoproject.com/api/1.0/persons",

"latest": "http://roa.fantasticoproject.com/api/latest/persons"},
"Address": {1.0 : "http://roa.fantasticoproject.com/api/1.0/addresses",

2.0 : "http://roa.fantasticoproject.com/api/2.0/addresses",
"latest": "http://roa.fantasticoproject.com/api/latest/addresses"}

}

4.11.5 OAuth2 Identity Provider

This component provides the built in Fantastico identity provider which supports:

• Customizable login screen

• API for users CRUD operations

• API for persons.

You can read more about this on OAUTH2 Fantastico IDP.

Integration

In order to use OAuth2 identity provider into your project follow the steps below:

1. Activate OAuth2 IDP extension.

fsdk activate-extension --name oauth2_idp --comp-root <comp_root>

2. Synchronize your database with latest changes.

fsdk syncdb --db-command /usr/bin/mysql --comp-root <comp_root>

3. Run development server.

4. Visit http://localhost:12000/oauth/authorize?response_type=token&state=xyz&error_format=hash&client_id=11111111-
1111-1111-1111-111111111111&scope=user.profile.read&redirect_uri=/oauth/idp/ui/cb

5. Log with admin@fantastico.com / 1234567890

6. You should see a success html page which displays your access token.

112 Chapter 4. Fantastico features

http://localhost:12000/oauth/authorize?response_type=token&state=xyz&error_format=hash&client_id=11111111-1111-1111-1111-111111111111&scope=user.profile.read&redirect_uri=/oauth/idp/ui/cb
http://localhost:12000/oauth/authorize?response_type=token&state=xyz&error_format=hash&client_id=11111111-1111-1111-1111-111111111111&scope=user.profile.read&redirect_uri=/oauth/idp/ui/cb
mailto:admin@fantastico.com

CHAPTER

FIVE

CHANGES

5.1 Feedback

I really hope you enjoy using Fantastico framework as much as we love developing it. Your feedback is highly
appreciated so do not hesitate to get in touch with us (for support, feature requests, suggestions, or everything else is
on your mind): Provide feedback

5.2 Versions

• v0.7.1 (stable)

– Added /api/oauth/profile/me for obtaining authenticated user profile information.

– Added on_pre_create / on_pre_update / on_pre_delete events for ROA.

– Added on_post_create / on_post_update / on_pre_delete events for ROA.

– Added isoformat for json serialization of datetime fields.

– Fix bug for full recursive serialization of subresources when requested.

– Added support for nested filtering into roa resources (e.g filter=eq(submodel.<property_name>,1))

– Added support for nested ordering into roa resource (e.g order=asc(submodel.<property_name>))

– Bring validate_email code into fantastico so that each new installation of framework works as expected
(cause by an incompatible python 3 validate_email package published on pypi).

• v0.7.0 (stable)

– Added support for cross origin requests on ROA resources registry (/roa/resources).

– Added support for exception serialized responses CORS compatible requests.

– Add CORS decorator for enabling CORS headers on custom controller routes.

– Add support for headers appended to each response (support for global CORS configurable headers).

– Fix cors for ROA fetch individual item.

– Fix @RequiredScopes attribute for MVC controllers (now it automatically validates the security context
before invoking underline method).

– Improve implicit grant handler so that it supports non redirect responses.

• v0.6.0 (Provide feedback)

– Added implicit grant type implementation.

113

https://docs.google.com/forms/d/1tKBopU3lfDB_w8F4h7Rl1Rn4uydAJq-nha09L_ptJck/edit?usp=sharing
https://docs.google.com/forms/d/1tKBopU3lfDB_w8F4h7Rl1Rn4uydAJq-nha09L_ptJck/edit?usp=sharing

fantastico Documentation, Release 0.7.0-b141

– Added security support for endpoints / controllers.

– Added Fantastico identity provider.

– Fix a bug in ROA APIs routes mapping.

– Added support for MVC Controllers into custom packages (not residing in components root folder).

– Added ROA resources dependent on user (integrated with OAuth2 access tokens).

– Added ROA resources OAuth2 authorization.

– !!!!! ROA ResourceValidator base class now adds two more methods for formatting resources and is
backward incompatible with Fantastico version 0.5.1.

– !!!!! ROA ResourceValidator validate method has changed signature and is backware incompatible with
Fantastico version 0.5.1.

• v0.5.1 (Provide feedback)

– Add a tutorial for creating TODO application based on ROA.
(http://rcosnita.github.io/fantastico/html/how_to/todo/index.html)

– Deployed TODO web application on a public accessible server. (http://todo.fantastico.scrum-
expert.ro/frontend/ui/index)

– Fix roa discovery component fsdk syncdb bug on subsequent runs.

– Fix roa api cors support.

• v0.5.0 (Provide feedback)

– Added specification for auto generated API for resources.

– Added OAUTH2 draft implementation details for Fantastico.

– Added Identity Provider draft specification.

– Added REST API Standard for ROA (Resource Oriented Architecture).

– Added REST filter parser implementation using fast ll grammar for ROA (Resource Oriented Architec-
ture).

– Added auto generated APIs for resources (Resource Oriented Architecture).

– Improved routing loaders so that multiple methods can serve separate http verbs of a route.

– Added support for multiple routes mapped on the same controller.

– Fixed a bug in MySql connections pool (not recycling correctly after a long idle period).

– I changed thread local MySql connection strategy to request based.

• v0.4.1 (Provide feedback)

– Fix a bug into analytics component sample data insert.

– Fix a bug into component rendering for no json responses coming for given url.

• v0.4.0 (Provide feedback)

– Fantastico SDK commands display official link to command documentation.

– Fantastico SDK syncdb command.

– Standard detection of database tables module setup / data insert created.

– Multiple tracking codes extension integrated into fantastico contrib.

– Dynamic pages extension integrated into fantastico contrib.

114 Chapter 5. Changes

https://docs.google.com/forms/d/1tKBopU3lfDB_w8F4h7Rl1Rn4uydAJq-nha09L_ptJck/edit?usp=sharing
http://rcosnita.github.io/fantastico/html/how_to/todo/index.html
http://todo.fantastico.scrum-expert.ro/frontend/ui/index
http://todo.fantastico.scrum-expert.ro/frontend/ui/index
https://docs.google.com/forms/d/1tKBopU3lfDB_w8F4h7Rl1Rn4uydAJq-nha09L_ptJck/edit?usp=sharing
https://docs.google.com/forms/d/1tKBopU3lfDB_w8F4h7Rl1Rn4uydAJq-nha09L_ptJck/edit?usp=sharing
https://docs.google.com/forms/d/1tKBopU3lfDB_w8F4h7Rl1Rn4uydAJq-nha09L_ptJck/edit?usp=sharing

fantastico Documentation, Release 0.7.0-b141

– Direct feedback channel integrated into documentation (Provide feedback)

• v0.3.0

– Fantastico SDK core is available.

– Fantastico SDK activate-extension command is available.

– Samples of how to activate extensions for an existing project are provided.

• v0.2.2

– Update dynamic menu activation documentation.

– Fix a serious bug in engine management and too many sql connections opened.

– Fix a bug in db session close when an unexpected error occurs when opening the connection.

– Add extensive unit tests for db session management.

• v0.2.1

– Fix packaging of pypi package. Now it is usable and contains rendering package as well as contrib
package.

• v0.2.0

– Framework documentation is tracked using Google Analytics

– Component reusage is done using {% component %} tag.

– Dynamic menu pluggable component can be used out of the box.

– MVC documentation improvements.

– Fix a bug in DB session management cache when configuration was changed at runtime.

• v0.1.2

– Nginx config file now also maps www.<vhost_name>

– Redirect support from controllers

– Setup fantastico framework script does not override deployment files anymore

• v0.1.1

– Favicon route handling.

– Deployment scripts error handling and root folder execution (rather than execution only for deploy-
ment subfolder).

– MVC how to article was changed to use get_records_paged instead of all_paged method (it used to
be a bug in documentation).

– DB Session manager was changed from one singleton connection to connection / request.

– FantasticoIntegrationTestCase now has a property that holds os environment variable name for setting
up Fantastico active config.

• v0.1.0

– Built in router that can be easily extended.

– WebOb Request / Response architecture.

– Request context support for accessing various attributes (current language, current user and other
attributes).

– Multiple project profiles support.

5.2. Versions 115

https://docs.google.com/forms/d/1tKBopU3lfDB_w8F4h7Rl1Rn4uydAJq-nha09L_ptJck/edit?usp=sharing

fantastico Documentation, Release 0.7.0-b141

– Database simple configuration for multiple environments.

– Model - View - Controller support.

– Automatic model facade generator.

– Model facade injection into Controllers.

– Templating engine support for views (jinja2).

– Documentation generator for pdf / html / epub formats.

– Automatic framework packaging and deployment.

– Helper scripts for creating projects based on Fantastico.

– Easy rollout script for running Fantastico projects behind nginx.

– Rollout scenarios for deploying Fantastico projects on Amazon (AWS).

– How to sections for creating new projects and components using Fantastico.

116 Chapter 5. Changes

CHAPTER

SIX

PROVIDE FEEDBACK

Provide feedback

117

https://docs.google.com/forms/d/1tKBopU3lfDB_w8F4h7Rl1Rn4uydAJq-nha09L_ptJck/edit?usp=sharing

fantastico Documentation, Release 0.7.0-b141

118 Chapter 6. Provide feedback

CHAPTER

SEVEN

BUILD STATUS

If you want to see the current build status of the project visit Build status.

119

http://jenkins.scrum-expert.ro:8080/job/fantastico-framework/badge/icon/

fantastico Documentation, Release 0.7.0-b141

120 Chapter 7. Build status

CHAPTER

EIGHT

LICENSE

Copyright 2013 Cosnita Radu Viorel

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

121

fantastico Documentation, Release 0.7.0-b141

122 Chapter 8. License

INDEX

Symbols
_check_server_started() (fantas-

tico.server.tests.itest_dev_server.DevServerIntegration
method), 9

_envs (fantastico.tests.base_case.FantasticoIntegrationTestCase
attribute), 8

_get_class_root_folder() (fantas-
tico.tests.base_case.FantasticoUnitTestsCase
method), 7

_get_db_conn() (fantas-
tico.tests.base_case.FantasticoIntegrationTestCase
method), 8

_get_oauth2_logintoken() (fantas-
tico.tests.base_case.FantasticoIntegrationTestCase
method), 8

_get_oauth2_token() (fantas-
tico.tests.base_case.FantasticoIntegrationTestCase
method), 8

_get_root_folder() (fantas-
tico.tests.base_case.FantasticoUnitTestsCase
method), 7

_get_server_base_url() (fantas-
tico.server.tests.itest_dev_server.DevServerIntegration
method), 9

_get_token() (fantastico.tests.base_case.FantasticoIntegrationTestCase
method), 8

_invalidate_encrypted_token() (fantas-
tico.tests.base_case.FantasticoIntegrationTestCase
method), 8

_invalidate_oauth2_token() (fantas-
tico.tests.base_case.FantasticoIntegrationTestCase
method), 8

_restore_call_methods() (fantas-
tico.tests.base_case.FantasticoIntegrationTestCase
method), 8

_run_test_against_dev_server() (fantas-
tico.server.tests.itest_dev_server.DevServerIntegration
method), 9

_save_call_methods() (fantas-
tico.tests.base_case.FantasticoIntegrationTestCase
method), 8

A
access_token (fantastico.oauth2.security_context.SecurityContext

attribute), 87
access_token_validity (fantastico.settings.BasicSettings

attribute), 4
AccessTokenGenerator (class in fantas-

tico.oauth2.accesstoken_generator), 91
add_argument() (fantas-

tico.roa.query_parser_operations.QueryParserOperation
method), 67

add_command() (fantas-
tico.sdk.sdk_core.SdkCommandsRegistry
static method), 99

AesTokenEncryption (class in fantas-
tico.oauth2.token_encryption), 92

all_resources() (fantastico.roa.resources_registry.ResourcesRegistry
method), 64

attr_name (fantastico.oauth2.exceptions.OAuth2InvalidTokenDescriptorError
attribute), 93

available_resources (fantas-
tico.roa.resources_registry.ResourcesRegistry
attribute), 64

available_url_resources (fantas-
tico.roa.resources_registry.ResourcesRegistry
attribute), 64

B
BaseController (class in fantastico.mvc.base_controller),

50
BasicSettings (class in fantastico.settings), 4
build() (fantastico.mvc.models.model_filter.ModelFilter

method), 51
build() (fantastico.mvc.models.model_filter.ModelFilterAbstract

method), 50
build() (fantastico.mvc.models.model_filter_compound.ModelFilterCompound

method), 51
build() (fantastico.mvc.models.model_sort.ModelSort

method), 52
build_filter() (fantastico.roa.query_parser_operations.QueryParserOperation

method), 67
build_filter() (fantastico.roa.query_parser_operations.QueryParserOperationBinary

method), 67

123

fantastico Documentation, Release 0.7.0-b141

build_filter() (fantastico.roa.query_parser_operations.QueryParserOperationCompound
method), 68

build_filter() (fantastico.roa.query_parser_operations.QueryParserOperationSort
method), 69

C
check_original_methods() (fantas-

tico.tests.base_case.FantasticoUnitTestsCase
method), 7

code (fantastico.locale.language.Language attribute), 40
column (fantastico.mvc.models.model_filter.ModelFilter

attribute), 51
column (fantastico.mvc.models.model_sort.ModelSort

attribute), 52
Component (class in fantastico.rendering.component),

103
Controller (class in fantastico.mvc.controller_decorators),

44
ControllerRouteLoader (class in fantas-

tico.mvc.controller_registrator), 49
CorsEnabled (class in fantas-

tico.mvc.controller_decorators), 52
count_records() (fantas-

tico.mvc.model_facade.ModelFacade method),
46

create() (fantastico.mvc.model_facade.ModelFacade
method), 46

create_item() (fantastico.contrib.roa_discovery.roa_controller.RoaController
method), 72

create_item_latest() (fantas-
tico.contrib.roa_discovery.roa_controller.RoaController
method), 72

create_scopes (fantastico.oauth2.oauth2_decorators.RequiredScopes
attribute), 87

curr_request (fantastico.mvc.base_controller.BaseController
attribute), 50

D
database_config (fantastico.settings.BasicSettings at-

tribute), 4
db_conn (fantastico.oauth2.tokens_service.TokensService

attribute), 89
decrypt() (fantastico.oauth2.tokens_service.TokensService

method), 89
decrypt_token() (fantas-

tico.oauth2.token_encryption.AesTokenEncryption
method), 92

decrypt_token() (fantas-
tico.oauth2.token_encryption.PublicTokenEncryption
method), 92

decrypt_token() (fantas-
tico.oauth2.token_encryption.TokenEncryption
method), 91

delete() (fantastico.mvc.model_facade.ModelFacade
method), 46

delete_item() (fantastico.contrib.roa_discovery.roa_controller.RoaController
method), 72

delete_item_latest() (fantas-
tico.contrib.roa_discovery.roa_controller.RoaController
method), 73

delete_scopes (fantastico.oauth2.oauth2_decorators.RequiredScopes
attribute), 88

deserialize() (fantastico.roa.resource_json_serializer.ResourceJsonSerializer
method), 69

dev_server_host (fantastico.settings.BasicSettings at-
tribute), 5

dev_server_port (fantastico.settings.BasicSettings at-
tribute), 5

DevServer (class in fantastico.server.dev_server), 9
DevServerIntegration (class in fantas-

tico.server.tests.itest_dev_server), 8
display_test() (fantastico.routing_engine.dummy_routeloader.DummyRouteLoader

method), 43
doc_base (fantastico.settings.BasicSettings attribute), 5
DummyRouteLoader (class in fantas-

tico.routing_engine.dummy_routeloader),
43

DynamicMenuController (class in fantas-
tico.contrib.dynamic_menu.menu_controller),
106

DynamicPage (class in fantas-
tico.contrib.dynamic_pages.models.pages),
108

DynamicPageModel (class in fantas-
tico.contrib.dynamic_pages.models.pages),
109

E
encrypt() (fantastico.oauth2.tokens_service.TokensService

method), 89
encrypt_token() (fantas-

tico.oauth2.token_encryption.AesTokenEncryption
method), 92

encrypt_token() (fantas-
tico.oauth2.token_encryption.PublicTokenEncryption
method), 92

encrypt_token() (fantas-
tico.oauth2.token_encryption.TokenEncryption
method), 91

error_code (fantastico.oauth2.exceptions.OAuth2Error
attribute), 93

exec() (fantastico.sdk.commands.command_activate_extension.SdkCommandActivateExtension
method), 96

exec() (fantastico.sdk.commands.command_syncdb.SdkCommandSyncDb
method), 97

exec() (fantastico.sdk.commands.command_version.SdkCommandVersion
method), 98

124 Index

fantastico Documentation, Release 0.7.0-b141

exec() (fantastico.sdk.fantastico.SdkCore method), 99
exec() (fantastico.sdk.sdk_core.SdkCommand method),

100
exec_command() (fantastico.sdk.sdk_core.SdkCommand

method), 100

F
fantastico_cfg_os_key (fantas-

tico.tests.base_case.FantasticoIntegrationTestCase
attribute), 8

FantasticoClassNotFoundError (class in fantas-
tico.exceptions), 37

FantasticoContentTypeError (class in fantas-
tico.exceptions), 38

FantasticoControllerInvalidError (class in fantas-
tico.exceptions), 37

FantasticoDbError (class in fantastico.exceptions), 38
FantasticoDbNotFoundError (class in fantas-

tico.exceptions), 38
FantasticoDuplicateRouteError (class in fantas-

tico.exceptions), 38
FantasticoError (class in fantastico.exceptions), 37
FantasticoHttpVerbNotSupported (class in fantas-

tico.exceptions), 38
FantasticoIncompatibleClassError (class in fantas-

tico.exceptions), 38
FantasticoInsufficientArgumentsError (class in fantas-

tico.exceptions), 38
FantasticoIntegrationTestCase (class in fantas-

tico.tests.base_case), 8
FantasticoMenuNotFoundException (class in fantas-

tico.contrib.dynamic_menu.menu_exceptions),
106

FantasticoNoRequestError (class in fantas-
tico.exceptions), 38

FantasticoNoRoutesError (class in fantastico.exceptions),
38

FantasticoNotSupportedError (class in fantas-
tico.exceptions), 37

FantasticoRoaDuplicateError (class in fantas-
tico.roa.roa_exceptions), 70

FantasticoRoaError (class in fantas-
tico.roa.roa_exceptions), 70

FantasticoRouteNotFoundError (class in fantas-
tico.exceptions), 38

FantasticoSdkCommandError (class in fantas-
tico.sdk.sdk_exceptions), 101

FantasticoSdkCommandNotFoundError (class in fantas-
tico.sdk.sdk_exceptions), 101

FantasticoSdkError (class in fantas-
tico.sdk.sdk_exceptions), 100

FantasticoSettingNotFoundError (class in fantas-
tico.exceptions), 37

FantasticoTemplateNotFoundError (class in fantas-
tico.exceptions), 38

FantasticoUnitTestsCase (class in fantas-
tico.tests.base_case), 7

FantasticoUrlInvokerError (class in fantas-
tico.exceptions), 38

find_by_name() (fantas-
tico.roa.resources_registry.ResourcesRegistry
method), 64

find_by_pk() (fantastico.mvc.model_facade.ModelFacade
method), 47

find_by_url() (fantastico.roa.resources_registry.ResourcesRegistry
method), 65

fn_handler (fantastico.mvc.controller_decorators.Controller
attribute), 45

format_collection() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 71

format_resource() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 71

G
generate() (fantastico.oauth2.accesstoken_generator.AccessTokenGenerator

method), 91
generate() (fantastico.oauth2.logintoken_generator.LoginTokenGenerator

method), 90
generate() (fantastico.oauth2.token_generator.TokenGenerator

method), 90
generate() (fantastico.oauth2.tokens_service.TokensService

method), 89
get() (fantastico.settings.SettingsFacade method), 6
get_arguments() (fantas-

tico.sdk.commands.command_activate_extension.SdkCommandActivateExtension
method), 96

get_arguments() (fantas-
tico.sdk.commands.command_syncdb.SdkCommandSyncDb
method), 97

get_arguments() (fantastico.sdk.fantastico.SdkCore
method), 99

get_arguments() (fantastico.sdk.sdk_core.SdkCommand
method), 100

get_collection() (fantas-
tico.contrib.roa_discovery.roa_controller.RoaController
method), 73

get_collection_latest() (fantas-
tico.contrib.roa_discovery.roa_controller.RoaController
method), 73

get_command() (fantas-
tico.sdk.sdk_core.SdkCommandsRegistry
static method), 99

get_component_folder() (fantas-
tico.mvc.base_controller.BaseController
method), 50

Index 125

fantastico Documentation, Release 0.7.0-b141

get_config() (fantastico.settings.SettingsFacade method),
6

get_expression() (fantas-
tico.mvc.models.model_filter.ModelFilter
method), 51

get_expression() (fantas-
tico.mvc.models.model_filter.ModelFilterAbstract
method), 50

get_expression() (fantas-
tico.mvc.models.model_filter_compound.ModelFilterCompound
method), 51

get_expression() (fantas-
tico.mvc.models.model_sort.ModelSort
method), 52

get_filter() (fantastico.roa.query_parser_operations.QueryParserOperation
method), 67

get_generator() (fantas-
tico.oauth2.tokengenerator_factory.TokenGeneratorFactory
method), 89

get_grammar_rules() (fantas-
tico.roa.query_parser_operations.QueryParserOperation
method), 67

get_grammar_rules() (fantas-
tico.roa.query_parser_operations.QueryParserOperationBinary
method), 67

get_grammar_rules() (fantas-
tico.roa.query_parser_operations.QueryParserOperationCompound
method), 68

get_grammar_rules() (fantas-
tico.roa.query_parser_operations.QueryParserOperationSort
method), 69

get_grammar_table() (fantas-
tico.roa.query_parser_operations.QueryParserOperation
method), 67

get_grammar_table() (fantas-
tico.roa.query_parser_operations.QueryParserOperationBinary
method), 68

get_grammar_table() (fantas-
tico.roa.query_parser_operations.QueryParserOperationCompound
method), 68

get_grammar_table() (fantas-
tico.roa.query_parser_operations.QueryParserOperationSort
method), 69

get_handler() (fantastico.oauth2.grant_handler_factory.GrantHandlerFactory
method), 92

get_hasher() (fantastico.oauth2.passwords_hasher_factory.PasswordsHasherFactory
method), 85

get_help() (fantastico.sdk.commands.command_activate_extension.SdkCommandActivateExtension
method), 97

get_help() (fantastico.sdk.commands.command_syncdb.SdkCommandSyncDb
method), 97

get_help() (fantastico.sdk.commands.command_version.SdkCommandVersion
method), 98

get_help() (fantastico.sdk.fantastico.SdkCore method),

99
get_item() (fantastico.contrib.roa_discovery.roa_controller.RoaController

method), 73
get_item_latest() (fantas-

tico.contrib.roa_discovery.roa_controller.RoaController
method), 73

get_loaders() (fantastico.routing_engine.router.Router
method), 41

get_records_paged() (fantas-
tico.mvc.model_facade.ModelFacade method),
47

get_registered_routes() (fantas-
tico.mvc.controller_decorators.Controller
class method), 45

get_root_folder() (fantastico.settings.SettingsFacade
method), 6

get_supported_operations() (fantas-
tico.mvc.models.model_filter.ModelFilter
static method), 51

get_supported_sort_dirs() (fantas-
tico.mvc.models.model_sort.ModelSort
method), 52

get_token() (fantastico.roa.query_parser_operations.QueryParserOperation
method), 67

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationAnd
method), 69

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationBinaryEq
method), 68

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationBinaryGe
method), 68

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationBinaryGt
method), 68

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationBinaryIn
method), 68

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationBinaryLe
method), 68

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationBinaryLike
method), 68

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationBinaryLt
method), 68

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationOr
method), 69

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationSortAsc
method), 69

get_token() (fantastico.roa.query_parser_operations.QueryParserOperationSortDesc
method), 69

global_response_headers (fantas-
tico.settings.BasicSettings attribute), 5

GrantHandler (class in fantastico.oauth2.grant_handler),
92

GrantHandlerFactory (class in fantas-
tico.oauth2.grant_handler_factory), 92

126 Index

fantastico Documentation, Release 0.7.0-b141

H
handle_authorize() (fantas-

tico.oauth2.oauth2_controller.OAuth2Controller
method), 86

handle_grant() (fantastico.oauth2.grant_handler.GrantHandler
method), 92

handle_grant() (fantastico.oauth2.implicit_grant_handler.ImplicitGrantHandler
method), 93

handle_list_resources_options() (fantas-
tico.contrib.roa_discovery.discovery_controller.RoaDiscoveryController
method), 66, 111

handle_resource_options() (fantas-
tico.contrib.roa_discovery.roa_controller.RoaController
method), 73

handle_resource_options_latest() (fantas-
tico.contrib.roa_discovery.roa_controller.RoaController
method), 74

handle_route() (fantastico.routing_engine.router.Router
method), 42

handle_token() (fantas-
tico.oauth2.oauth2_controller.OAuth2Controller
method), 86

handler_type (fantastico.oauth2.exceptions.OAuth2UnsupportedGrantError
attribute), 94

hash_password() (fantas-
tico.oauth2.passwords_hasher.PasswordsHasher
method), 84

hash_password() (fantas-
tico.oauth2.sha512salt_passwords_hasher.Sha512SaltPasswordsHasher
method), 85

help (fantastico.sdk.sdk_core.SdkCommandArgument at-
tribute), 99

http_code (fantastico.exceptions.FantasticoError at-
tribute), 37

http_verb (fantastico.exceptions.FantasticoHttpVerbNotSupported
attribute), 38

I
ImplicitGrantHandler (class in fantas-

tico.oauth2.implicit_grant_handler), 93
inject_scopes_in_security() (fantas-

tico.oauth2.oauth2_decorators.RequiredScopes
method), 88

installed_middleware (fantastico.settings.BasicSettings
attribute), 5

invalidate() (fantastico.oauth2.token_generator.TokenGenerator
method), 90

invalidate() (fantastico.oauth2.tokens_service.TokensService
method), 89

L
Language (class in fantastico.locale.language), 40
language (fantastico.middleware.request_context.RequestContext

attribute), 40

list_codes() (fantastico.contrib.tracking_codes.tracking_controller.TrackingController
method), 111

list_codes_ui() (fantastico.contrib.tracking_codes.tracking_controller.TrackingController
method), 111

list_registered_resources() (fantas-
tico.contrib.roa_discovery.discovery_controller.RoaDiscoveryController
method), 66, 112

load_routes() (fantastico.mvc.controller_registrator.ControllerRouteLoader
method), 49

load_routes() (fantastico.roa.resources_registrator.ResourcesRegistrator
method), 65

load_routes() (fantastico.routing_engine.routing_loaders.RouteLoader
method), 42

load_template() (fantas-
tico.mvc.base_controller.BaseController
method), 50

LoginTokenGenerator (class in fantas-
tico.oauth2.logintoken_generator), 90

M
max_items (fantastico.contrib.dynamic_menu.menu_controller.DynamicMenuController

attribute), 106
method (fantastico.mvc.controller_decorators.Controller

attribute), 45
model (fantastico.roa.resource_decorator.Resource

attribute), 63
model_cls (fantastico.mvc.model_facade.ModelFacade

attribute), 48
model_filters (fantastico.mvc.models.model_filter_compound.ModelFilterCompound

attribute), 51
model_pk_cols (fantas-

tico.mvc.model_facade.ModelFacade at-
tribute), 48

ModelFacade (class in fantastico.mvc.model_facade), 46
ModelFilter (class in fantas-

tico.mvc.models.model_filter), 51
ModelFilterAbstract (class in fantas-

tico.mvc.models.model_filter), 50
ModelFilterAnd (class in fantas-

tico.mvc.models.model_filter_compound),
51

ModelFilterCompound (class in fantas-
tico.mvc.models.model_filter_compound),
51

ModelFilterOr (class in fantas-
tico.mvc.models.model_filter_compound),
51

models (fantastico.mvc.controller_decorators.Controller
attribute), 45

ModelSessionMiddleware (class in fantas-
tico.middleware.model_session_middleware),
52

ModelSort (class in fantastico.mvc.models.model_sort),
52

Index 127

fantastico Documentation, Release 0.7.0-b141

mvc_additional_paths (fantastico.settings.BasicSettings
attribute), 5

N
name (fantastico.roa.resource_decorator.Resource at-

tribute), 63
name (fantastico.sdk.sdk_core.SdkCommandArgument

attribute), 99
new_model() (fantastico.mvc.model_facade.ModelFacade

method), 48

O
oauth2_idp (fantastico.settings.BasicSettings attribute), 5
OAuth2AuthenticationError (class in fantas-

tico.oauth2.exceptions), 94
OAuth2Controller (class in fantas-

tico.oauth2.oauth2_controller), 85
OAuth2Error (class in fantastico.oauth2.exceptions), 93
OAuth2ExceptionsMiddleware (class in fantas-

tico.oauth2.middleware.exceptions_middleware),
86

OAuth2InvalidClientError (class in fantas-
tico.oauth2.exceptions), 93

OAuth2InvalidScopesError (class in fantas-
tico.oauth2.exceptions), 94

OAuth2InvalidTokenDescriptorError (class in fantas-
tico.oauth2.exceptions), 93

OAuth2InvalidTokenTypeError (class in fantas-
tico.oauth2.exceptions), 93

OAuth2MissingQueryParamError (class in fantas-
tico.oauth2.exceptions), 94

OAuth2TokenEncryptionError (class in fantas-
tico.oauth2.exceptions), 94

OAuth2TokenExpiredError (class in fantas-
tico.oauth2.exceptions), 93

OAuth2TokensMiddleware (class in fantas-
tico.oauth2.middleware.tokens_middleware),
86

OAuth2UnauthorizedError (class in fantas-
tico.oauth2.exceptions), 94

OAuth2UnsupportedGrantError (class in fantas-
tico.oauth2.exceptions), 94

on_post_create() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 71

on_post_delete() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 71

on_post_update() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 71

on_pre_create() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 71

on_pre_delete() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 71

on_pre_update() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 71

operation (fantastico.mvc.models.model_filter.ModelFilter
attribute), 51

P
PagesRouter (class in fantas-

tico.contrib.dynamic_pages.pages_router),
108

param_name (fantastico.oauth2.exceptions.OAuth2MissingQueryParamError
attribute), 94

parse() (fantastico.rendering.component.Component
method), 104

parse_filter() (fantastico.roa.query_parser.QueryParser
method), 66

parse_sort() (fantastico.roa.query_parser.QueryParser
method), 66

PasswordsHasher (class in fantas-
tico.oauth2.passwords_hasher), 84

PasswordsHasherFactory (class in fantas-
tico.oauth2.passwords_hasher_factory), 85

PublicTokenEncryption (class in fantas-
tico.oauth2.token_encryption), 92

Q
QueryParser (class in fantastico.roa.query_parser), 66
QueryParserOperation (class in fantas-

tico.roa.query_parser_operations), 67
QueryParserOperationAnd (class in fantas-

tico.roa.query_parser_operations), 69
QueryParserOperationBinary (class in fantas-

tico.roa.query_parser_operations), 67
QueryParserOperationBinaryEq (class in fantas-

tico.roa.query_parser_operations), 68
QueryParserOperationBinaryGe (class in fantas-

tico.roa.query_parser_operations), 68
QueryParserOperationBinaryGt (class in fantas-

tico.roa.query_parser_operations), 68
QueryParserOperationBinaryIn (class in fantas-

tico.roa.query_parser_operations), 68
QueryParserOperationBinaryLe (class in fantas-

tico.roa.query_parser_operations), 68
QueryParserOperationBinaryLike (class in fantas-

tico.roa.query_parser_operations), 68
QueryParserOperationBinaryLt (class in fantas-

tico.roa.query_parser_operations), 68
QueryParserOperationCompound (class in fantas-

tico.roa.query_parser_operations), 68
QueryParserOperationInvalidError (class in fantas-

tico.roa.query_parser_exceptions), 70

128 Index

fantastico Documentation, Release 0.7.0-b141

QueryParserOperationOr (class in fantas-
tico.roa.query_parser_operations), 69

QueryParserOperationSort (class in fantas-
tico.roa.query_parser_operations), 69

QueryParserOperationSortAsc (class in fantas-
tico.roa.query_parser_operations), 69

QueryParserOperationSortDesc (class in fantas-
tico.roa.query_parser_operations), 69

R
read_scopes (fantastico.oauth2.oauth2_decorators.RequiredScopes

attribute), 88
RedirectResponse (class in fantas-

tico.routing_engine.custom_responses), 40
ref_value (fantastico.mvc.models.model_filter.ModelFilter

attribute), 51
register_resource() (fantas-

tico.roa.resources_registry.ResourcesRegistry
method), 65

register_resources() (fantas-
tico.roa.resources_registrator.ResourcesRegistrator
method), 65

register_routes() (fantastico.routing_engine.router.Router
method), 42

render() (fantastico.rendering.component.Component
method), 104

RequestContext (class in fantas-
tico.middleware.request_context), 39

RequestMiddleware (class in fantas-
tico.middleware.request_middleware), 39

required_scopes (fantas-
tico.oauth2.security_context.SecurityContext
attribute), 87

RequiredScopes (class in fantas-
tico.oauth2.oauth2_decorators), 87

Resource (class in fantastico.roa.resource_decorator), 63
ResourceJsonSerializer (class in fantas-

tico.roa.resource_json_serializer), 69
ResourceJsonSerializerError (class in fantas-

tico.roa.resource_json_serializer_exceptions),
70

ResourcesRegistrator (class in fantas-
tico.roa.resources_registrator), 65

ResourcesRegistry (class in fantas-
tico.roa.resources_registry), 64

ResourceValidator (class in fantas-
tico.roa.resource_validator), 70

retrieve_menu_items() (fantas-
tico.contrib.dynamic_menu.menu_controller.DynamicMenuController
method), 106

roa_api (fantastico.settings.BasicSettings attribute), 5
RoaController (class in fantas-

tico.contrib.roa_discovery.roa_controller),
72

RoaDiscoveryController (class in fantas-
tico.contrib.roa_discovery.discovery_controller),
66, 111

RouteLoader (class in fantas-
tico.routing_engine.routing_loaders), 42

Router (class in fantastico.routing_engine.router), 41
routes_loaders (fantastico.settings.BasicSettings at-

tribute), 5
RoutingMiddleware (class in fantas-

tico.middleware.routing_middleware), 43

S
scanned_folders (fantas-

tico.mvc.controller_registrator.ControllerRouteLoader
attribute), 50

scopes (fantastico.oauth2.oauth2_decorators.RequiredScopes
attribute), 88

SdkCommand (class in fantastico.sdk.sdk_core), 100
SdkCommand (class in fantastico.sdk.sdk_decorators),

100
SdkCommandActivateExtension (class in fantas-

tico.sdk.commands.command_activate_extension),
96

SdkCommandArgument (class in fantas-
tico.sdk.sdk_core), 99

SdkCommandsRegistry (class in fantas-
tico.sdk.sdk_core), 99

SdkCommandSyncDb (class in fantas-
tico.sdk.commands.command_syncdb), 97

SdkCommandVersion (class in fantas-
tico.sdk.commands.command_version), 98

SdkCore (class in fantastico.sdk.fantastico), 98
SecurityContext (class in fantas-

tico.oauth2.security_context), 86
serialize() (fantastico.roa.resource_json_serializer.ResourceJsonSerializer

method), 70
serve_dynamic_page() (fantas-

tico.contrib.dynamic_pages.pages_router.PagesRouter
method), 108

session (fantastico.mvc.model_facade.ModelFacade at-
tribute), 48

settings (fantastico.middleware.request_context.RequestContext
attribute), 40

SettingsFacade (class in fantastico.settings), 6
setup_once() (fantastico.tests.base_case.FantasticoUnitTestsCase

class method), 8
Sha512SaltPasswordsHasher (class in fantas-

tico.oauth2.sha512salt_passwords_hasher),
85

short_name (fantastico.sdk.sdk_core.SdkCommandArgument
attribute), 99

sort_dir (fantastico.mvc.models.model_sort.ModelSort
attribute), 52

start() (fantastico.server.dev_server.DevServer method), 9

Index 129

fantastico Documentation, Release 0.7.0-b141

started (fantastico.server.dev_server.DevServer attribute),
10

stop() (fantastico.server.dev_server.DevServer method),
10

subresources (fantastico.roa.resource_decorator.Resource
attribute), 63

supported_languages (fantastico.settings.BasicSettings
attribute), 5

T
templates_config (fantastico.settings.BasicSettings

attribute), 6
Token (class in fantastico.oauth2.token), 88
token_type (fantastico.oauth2.exceptions.OAuth2InvalidTokenTypeError

attribute), 93
TokenEncryption (class in fantas-

tico.oauth2.token_encryption), 91
TokenGenerator (class in fantas-

tico.oauth2.token_generator), 90
TokenGeneratorFactory (class in fantas-

tico.oauth2.tokengenerator_factory), 89
TokensService (class in fantas-

tico.oauth2.tokens_service), 88
TrackingCode (class in fantas-

tico.contrib.tracking_codes.models.codes),
111

TrackingController (class in fantas-
tico.contrib.tracking_codes.tracking_controller),
110

type (fantastico.sdk.sdk_core.SdkCommandArgument at-
tribute), 99

U
unregister_resource() (fantas-

tico.roa.resources_registry.ResourcesRegistry
method), 65

update() (fantastico.mvc.model_facade.ModelFacade
method), 48

update_item() (fantastico.contrib.roa_discovery.roa_controller.RoaController
method), 74

update_item_latest() (fantas-
tico.contrib.roa_discovery.roa_controller.RoaController
method), 74

update_scopes (fantastico.oauth2.oauth2_decorators.RequiredScopes
attribute), 88

url (fantastico.mvc.controller_decorators.Controller at-
tribute), 45

url (fantastico.roa.resource_decorator.Resource attribute),
64

user_dependent (fantas-
tico.roa.resource_decorator.Resource attribute),
64

V
validate() (fantastico.oauth2.accesstoken_generator.AccessTokenGenerator

method), 91
validate() (fantastico.oauth2.logintoken_generator.LoginTokenGenerator

method), 90
validate() (fantastico.oauth2.token_generator.TokenGenerator

method), 90
validate() (fantastico.oauth2.tokens_service.TokensService

method), 89
validate() (fantastico.roa.query_parser_operations.QueryParserOperation

method), 67
validate() (fantastico.roa.query_parser_operations.QueryParserOperationBinary

method), 68
validate() (fantastico.roa.query_parser_operations.QueryParserOperationCompound

method), 69
validate() (fantastico.roa.query_parser_operations.QueryParserOperationSort

method), 69
validate() (fantastico.roa.resource_validator.ResourceValidator

method), 71
validate_context() (fantas-

tico.oauth2.security_context.SecurityContext
method), 87

validate_missing_attr() (fantas-
tico.roa.resource_validator.ResourceValidator
method), 72

validate_security_context() (fantas-
tico.contrib.roa_discovery.roa_controller.RoaController
method), 74

validator (fantastico.roa.resource_decorator.Resource at-
tribute), 64

version (fantastico.roa.resource_decorator.Resource at-
tribute), 64

W
wsgi_app (fantastico.middleware.request_context.RequestContext

attribute), 40

130 Index

	Introduction
	Why another python framework?
	Fantastico's initial ideas

	Getting started
	Installation manual
	Fantastico settings
	Contribute
	Development mode

	How to articles
	Creating a new project
	Creating a simple TODO application
	MVC How to
	Deployment how to
	Static assets

	Fantastico features
	Exceptions hierarchy
	Request lifecycle
	Routing engine
	Model View Controller
	CORS
	ROA (Resource Oriented Architecture)
	OAUTH2
	SDK
	Component model
	Component reusage
	Built in components

	Changes
	Feedback
	Versions

	Provide feedback
	Build status
	License
	Index

